--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'a comic strip of garfield, by jim davis. the first panel has garfield saying Help!. the second panel has garfield saying My clungus is leaking! and the third panel has Odie saying uh oh!' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png - text: 'a comic strip by jim davis, showcasing odie in his full demonic form while garfield cowers in the background' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_0.png - text: 'a picture of garfield in walmart, shopping amongst the real people' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_3_0.png - text: 'A photo-realistic image of a cat' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_4_0.png --- # simpletuner-lora-schedulefree This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` A photo-realistic image of a cat ``` ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `None` - Seed: `42` - Resolution: `1776x512` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 7 - Training steps: 3000 - Learning rate: 0.0001 - Effective batch size: 6 - Micro-batch size: 2 - Gradient accumulation steps: 1 - Number of GPUs: 3 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: adamw_schedulefree+aggressiveweight_decay=1e-3 - Precision: bf16 - Quantised: Yes: fp8-quanto - Xformers: Not used - LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "linear_alpha": 1, "factor": 12, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 12 }, "FeedForward": { "factor": 6 } } } } ``` ## Datasets ### garfield - Repeats: 0 - Total number of images: ~2208 - Total number of aspect buckets: 1 - Resolution: 512 px - Cropped: True - Crop style: random - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer) wrapper.merge_to() prompt = "A photo-realistic image of a cat" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1776, height=512, guidance_scale=3.0, ).images[0] image.save("output.png", format="PNG") ```