--- license: other base_model: "stabilityai/stable-diffusion-3.5-medium" tags: - sd3 - sd3-diffusers - text-to-image - image-to-image - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - standard pipeline_tag: text-to-image inference: true --- # sd35m-photo-1mp-Prodigy This is a standard PEFT LoRA derived from [stabilityai/stable-diffusion-3.5-medium](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium). The main validation prompt used during training was: ``` A photo-realistic image of a cat ``` ## Validation settings - CFG: `3.2` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `1024x1024` - Skip-layer guidance: skip_guidance_layers=[7, 8, 9], Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 19 - Training steps: 40 - Learning rate: 5e-05 - Learning rate schedule: cosine - Warmup steps: 400000 - Max grad value: 0.0 - Effective batch size: 12 - Micro-batch size: 4 - Gradient accumulation steps: 1 - Number of GPUs: 3 - Gradient checkpointing: True - Prediction type: flow_matching (extra parameters=['shift=3.0']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Base model precision: `no_change` - Caption dropout probability: 10.0% - LoRA Rank: 128 - LoRA Alpha: 128.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### cheechandchong - Repeats: 0 - Total number of images: ~18 - Total number of aspect buckets: 1 - Resolution: 512 px - Cropped: True - Crop style: random - Crop aspect: square - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'stabilityai/stable-diffusion-3.5-medium' adapter_id = 'bghira/sd35m-photo-1mp-Prodigy' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "A photo-realistic image of a cat" negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average' ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=3.2, skip_guidance_layers=[7, 8, 9], ).images[0] model_output.save("output.png", format="PNG") ``` ## Exponential Moving Average (EMA) SimpleTuner generates a safetensors variant of the EMA weights and a pt file. The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning. The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.