--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID ## Model Details ***A 1.5B model for reasoning ability:*** ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch MAX_REASONING_TOKENS = 4096 MAX_RESPONSE_TOKENS = 256 # Recommend 512, 1024 Recommen model = AutoModelForCausalLM.from_pretrained( 'beyoru/ThinkAgainSm_1', torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained('beyoru/ThinkAgainSm_1') while True: prompt = input("USER: ") messages = [ {"role": "user", "content": prompt} ] # Generate reasoning reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) print(reasoning_output) # Generate answer messages.append({"role": "reasoning", "content": reasoning_output}) response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) messages.append({"role": "assistant", "content": response_output}) print(response_output) ``` Training on 2 hour with LoRA only attns layers rank = 32, aplpha = 64 lr = 2e-4, For the instruction task recommend to add in the user prompt, not the system prompt. Example: Create SQL query for sepectific table you will provide:\ ``` \n \n ``` # Weakness: - Model still priority for English