--- library_name: transformers license: mit base_model: nielsr/lilt-xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: output_LiLT_test_03 results: [] --- # output_LiLT_test_03 This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1452 - Precision: 0.7549 - Recall: 0.8276 - F1: 0.7896 - Accuracy: 0.9577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.0808 | 100 | 0.5589 | 0.0259 | 0.0020 | 0.0037 | 0.8724 | | No log | 0.1617 | 200 | 0.3198 | 0.3704 | 0.3698 | 0.3701 | 0.9009 | | No log | 0.2425 | 300 | 0.2222 | 0.6005 | 0.6743 | 0.6353 | 0.9346 | | No log | 0.3234 | 400 | 0.1950 | 0.7231 | 0.6316 | 0.6743 | 0.9446 | | 0.4262 | 0.4042 | 500 | 0.1684 | 0.7115 | 0.7215 | 0.7165 | 0.9491 | | 0.4262 | 0.4850 | 600 | 0.1885 | 0.6328 | 0.7602 | 0.6907 | 0.9366 | | 0.4262 | 0.5659 | 700 | 0.1776 | 0.6609 | 0.8097 | 0.7278 | 0.9437 | | 0.4262 | 0.6467 | 800 | 0.2086 | 0.6420 | 0.8034 | 0.7137 | 0.9398 | | 0.4262 | 0.7276 | 900 | 0.1702 | 0.8241 | 0.7469 | 0.7836 | 0.9611 | | 0.1027 | 0.8084 | 1000 | 0.1496 | 0.8028 | 0.7558 | 0.7786 | 0.9601 | | 0.1027 | 0.8892 | 1100 | 0.1620 | 0.7354 | 0.7754 | 0.7549 | 0.9513 | | 0.1027 | 0.9701 | 1200 | 0.1404 | 0.8062 | 0.7997 | 0.8029 | 0.9627 | | 0.1027 | 1.0509 | 1300 | 0.1626 | 0.7976 | 0.7564 | 0.7764 | 0.9597 | | 0.1027 | 1.1318 | 1400 | 0.1741 | 0.7253 | 0.8089 | 0.7648 | 0.9485 | | 0.0764 | 1.2126 | 1500 | 0.1278 | 0.8170 | 0.7798 | 0.7979 | 0.9645 | | 0.0764 | 1.2935 | 1600 | 0.1452 | 0.7549 | 0.8276 | 0.7896 | 0.9577 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1