Upload TaiVisionForCausalLM
Browse files- config.json +6 -1
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_taivisionlm.py +472 -0
config.json
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"auto_map": {
|
3 |
-
"AutoConfig": "configuration_taivisionlm.TaiVisionLMConfig"
|
|
|
4 |
},
|
5 |
"hidden_size": 2048,
|
6 |
"ignore_index": -100,
|
@@ -21,6 +25,7 @@
|
|
21 |
"torch_dtype": "bfloat16",
|
22 |
"vocab_size": 32001
|
23 |
},
|
|
|
24 |
"transformers_version": "4.44.0",
|
25 |
"vision_config": {
|
26 |
"model_type": "siglip_vision_model",
|
|
|
1 |
{
|
2 |
+
"architectures": [
|
3 |
+
"TaiVisionForCausalLM"
|
4 |
+
],
|
5 |
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_taivisionlm.TaiVisionLMConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_taivisionlm.TaiVisionForCausalLM"
|
8 |
},
|
9 |
"hidden_size": 2048,
|
10 |
"ignore_index": -100,
|
|
|
25 |
"torch_dtype": "bfloat16",
|
26 |
"vocab_size": 32001
|
27 |
},
|
28 |
+
"torch_dtype": "float32",
|
29 |
"transformers_version": "4.44.0",
|
30 |
"vision_config": {
|
31 |
"model_type": "siglip_vision_model",
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.44.0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e3c91245701f070448659cda849d90ef35ea419ad8aa53c459b20a7d516df00
|
3 |
+
size 4806424752
|
modeling_taivisionlm.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch TaiVisionLM"""
|
2 |
+
import torch
|
3 |
+
from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM
|
4 |
+
from transformers.utils import logging, add_start_docstrings, ModelOutput
|
5 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
from torch import nn
|
9 |
+
from transformers.cache_utils import Cache, StaticCache
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
from .configuration_taivisionlm import TaiVisionLMConfig
|
14 |
+
|
15 |
+
_CONFIG_FOR_DOC = "TaiVisionLMConfig"
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class TaiVisionCausalLMOutputWithPast(ModelOutput):
|
19 |
+
"""
|
20 |
+
Base class for TaiVision language model (or autoregressive) outputs.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
24 |
+
Language modeling loss (for next-token prediction).
|
25 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
26 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
27 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
28 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
29 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
30 |
+
|
31 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
32 |
+
`past_key_values` input) to speed up sequential decoding.
|
33 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
34 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
35 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
36 |
+
|
37 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
38 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
39 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
40 |
+
sequence_length)`.
|
41 |
+
|
42 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
43 |
+
heads.
|
44 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
45 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
46 |
+
sequence_length, hidden_size)`.
|
47 |
+
|
48 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
49 |
+
"""
|
50 |
+
loss: Optional[torch.FloatTensor] = None
|
51 |
+
logits: torch.FloatTensor = None
|
52 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
|
53 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
54 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
55 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
56 |
+
|
57 |
+
|
58 |
+
class TaiVisionMultiModalProjector(nn.Module):
|
59 |
+
"""
|
60 |
+
Multimodal projector that cast the image features into the same dimension space as the language model
|
61 |
+
"""
|
62 |
+
def __init__(self, config: TaiVisionLMConfig, dropout=0.1):
|
63 |
+
super().__init__()
|
64 |
+
self.net = nn.Sequential(
|
65 |
+
nn.Linear(config.vision_config.projection_dim, 4*config.vision_config.projection_dim, bias=True),
|
66 |
+
nn.GELU(),
|
67 |
+
nn.Linear(4*config.vision_config.projection_dim, config.hidden_size, bias=True),
|
68 |
+
nn.Dropout(dropout)
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(self, image_features):
|
72 |
+
hidden_states = self.net(image_features).to(image_features.dtype)
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
TRAVISIONLM_START_DOCSTRING = r"""
|
77 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
78 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
79 |
+
etc.)
|
80 |
+
|
81 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
82 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
83 |
+
and behavior.
|
84 |
+
|
85 |
+
Parameters:
|
86 |
+
config ([`TaiVisionLMConfig`]):
|
87 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
88 |
+
load the weights associated with the model, only the configuration. Check out the
|
89 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
90 |
+
"""
|
91 |
+
|
92 |
+
@add_start_docstrings(
|
93 |
+
"The bare TaiVision Model outputting raw hidden-states without any specific head on top.",
|
94 |
+
TRAVISIONLM_START_DOCSTRING,
|
95 |
+
)
|
96 |
+
class TaiVisionPreTrainedModel(PreTrainedModel):
|
97 |
+
config_class = TaiVisionLMConfig
|
98 |
+
base_model_prefix = "model"
|
99 |
+
supports_gradient_checkpointing = True
|
100 |
+
_no_split_modules = ["TaiVisionMultiModalProjector"]
|
101 |
+
_skip_keys_device_placement = "past_key_values"
|
102 |
+
_supports_flash_attn_2 = True
|
103 |
+
_supports_sdpa = True
|
104 |
+
|
105 |
+
def _init_weights(self, module):
|
106 |
+
# Do NOT init the weights of the model using this class call, this is a ported version,
|
107 |
+
# hence not intended to be trained from scratch.
|
108 |
+
std = (
|
109 |
+
self.config.initializer_range
|
110 |
+
if hasattr(self.config, "initializer_range")
|
111 |
+
else self.config.text_config.initializer_range
|
112 |
+
)
|
113 |
+
|
114 |
+
if hasattr(module, "class_embedding"):
|
115 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
116 |
+
|
117 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
118 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
119 |
+
if module.bias is not None:
|
120 |
+
module.bias.data.zero_()
|
121 |
+
elif isinstance(module, nn.Embedding):
|
122 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
123 |
+
if module.padding_idx is not None:
|
124 |
+
module.weight.data[module.padding_idx].zero_()
|
125 |
+
|
126 |
+
@property
|
127 |
+
def _supports_sdpa(self):
|
128 |
+
"""
|
129 |
+
Retrieve language_model's attribute to check whether the model supports
|
130 |
+
SDPA or not.
|
131 |
+
"""
|
132 |
+
return self.language_model._supports_sdpa
|
133 |
+
|
134 |
+
|
135 |
+
@add_start_docstrings(
|
136 |
+
"""The TaiVisionLM model which consists of a vision backbone and a language model.""",
|
137 |
+
TRAVISIONLM_START_DOCSTRING,
|
138 |
+
)
|
139 |
+
class TaiVisionForCausalLM(TaiVisionPreTrainedModel):
|
140 |
+
def __init__(self, config: TaiVisionLMConfig):
|
141 |
+
super(TaiVisionForCausalLM, self).__init__(config)
|
142 |
+
self.vocab_size = config.text_config.vocab_size
|
143 |
+
self.pad_token_id = -1 if config.pad_token_id == None else config.pad_token_id
|
144 |
+
self._attn_implementation = config._attn_implementation
|
145 |
+
self.gradient_checkpointing = False
|
146 |
+
|
147 |
+
self.vision_tower = AutoModel.from_config(config=config.vision_config)
|
148 |
+
self.vision_projector = TaiVisionMultiModalProjector(config)
|
149 |
+
|
150 |
+
language_model = AutoModelForCausalLM.from_config(
|
151 |
+
config=config.text_config, attn_implementation=self._attn_implementation
|
152 |
+
)
|
153 |
+
if language_model._tied_weights_keys is not None:
|
154 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
155 |
+
|
156 |
+
self.language_model = language_model
|
157 |
+
self.post_init()
|
158 |
+
|
159 |
+
def load_pretrained(self):
|
160 |
+
'''
|
161 |
+
load the pretrained weights for language model and vision model
|
162 |
+
'''
|
163 |
+
import transformers
|
164 |
+
language_model = AutoModelForCausalLM.from_pretrained("benchang1110/Taiwan-tinyllama-v1.0-chat")
|
165 |
+
if language_model.vocab_size != self.vocab_size:
|
166 |
+
print("vocab size mismatch, resize the token embeddings for the pretained language model")
|
167 |
+
language_model.resize_token_embeddings(self.vocab_size)
|
168 |
+
self.language_model = language_model
|
169 |
+
vision_model = transformers.SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
170 |
+
self.vision_tower = vision_model
|
171 |
+
|
172 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_input_embeddings with PaliGemma->TaiVisionLM
|
173 |
+
def get_input_embeddings(self):
|
174 |
+
return self.language_model.get_input_embeddings()
|
175 |
+
|
176 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_input_embeddings with PaliGemma->TaiVisionLM
|
177 |
+
def set_input_embeddings(self, value):
|
178 |
+
self.language_model.set_input_embeddings(value)
|
179 |
+
|
180 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_output_embeddings with PaliGemma->TaiVisionLM
|
181 |
+
def get_output_embeddings(self):
|
182 |
+
return self.language_model.get_output_embeddings()
|
183 |
+
|
184 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_output_embeddings with PaliGemma->TaiVisionLM
|
185 |
+
def set_output_embeddings(self, new_embeddings):
|
186 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
187 |
+
|
188 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_decoder with PaliGemma->TaiVisionLM
|
189 |
+
def set_decoder(self, decoder):
|
190 |
+
self.language_model.set_decoder(decoder)
|
191 |
+
|
192 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_decoder with PaliGemma->TaiVisionLM
|
193 |
+
def get_decoder(self):
|
194 |
+
return self.language_model.get_decoder()
|
195 |
+
|
196 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.tie_weights with PaliGemma->TaiVisionLM
|
197 |
+
def tie_weights(self):
|
198 |
+
return self.language_model.tie_weights()
|
199 |
+
|
200 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
201 |
+
# TODO: config.vocab_size is deprecated and will be removed in v4.43.
|
202 |
+
# `resize_token_embeddings` should work from `modeling_utils.py``
|
203 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
204 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
205 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
206 |
+
self.vocab_size = model_embeds.num_embeddings
|
207 |
+
return model_embeds
|
208 |
+
|
209 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration._merge_input_ids_with_image_features with PaliGemma->TaiVisionLM
|
210 |
+
def _update_causal_mask(
|
211 |
+
self, attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training: bool = False
|
212 |
+
):
|
213 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
214 |
+
dtype, device = inputs_embeds.dtype, inputs_embeds.device
|
215 |
+
min_dtype = torch.finfo(dtype).min
|
216 |
+
sequence_length = inputs_embeds.shape[1]
|
217 |
+
if using_static_cache:
|
218 |
+
target_length = past_key_values.get_max_length()
|
219 |
+
else:
|
220 |
+
target_length = (
|
221 |
+
attention_mask.shape[-1]
|
222 |
+
if isinstance(attention_mask, torch.Tensor)
|
223 |
+
else cache_position[0] + sequence_length + 1
|
224 |
+
)
|
225 |
+
|
226 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
227 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
228 |
+
causal_mask = attention_mask
|
229 |
+
else:
|
230 |
+
causal_mask = torch.full(
|
231 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
232 |
+
)
|
233 |
+
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
|
234 |
+
if sequence_length != 1:
|
235 |
+
if is_training:
|
236 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
237 |
+
else:
|
238 |
+
causal_mask = torch.zeros_like(causal_mask)
|
239 |
+
|
240 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
241 |
+
causal_mask = causal_mask[None, None, :, :].expand(inputs_embeds.shape[0], 1, -1, -1)
|
242 |
+
if attention_mask is not None:
|
243 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
244 |
+
mask_length = attention_mask.shape[-1]
|
245 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
|
246 |
+
padding_mask = padding_mask == 0
|
247 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
248 |
+
padding_mask, min_dtype
|
249 |
+
)
|
250 |
+
# we are training thus we need to create a full mask on the image + prefix but causal on suffix
|
251 |
+
if is_training:
|
252 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
253 |
+
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
|
254 |
+
)
|
255 |
+
return causal_mask
|
256 |
+
|
257 |
+
|
258 |
+
def forward(
|
259 |
+
self,
|
260 |
+
input_ids: torch.LongTensor = None,
|
261 |
+
pixel_values: torch.FloatTensor = None,
|
262 |
+
attention_mask: Optional[torch.Tensor] = None,
|
263 |
+
position_ids: Optional[torch.LongTensor] = None,
|
264 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
265 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
266 |
+
cache_position: Optional[torch.LongTensor] = None,
|
267 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
268 |
+
labels: Optional[torch.LongTensor] = None,
|
269 |
+
use_cache: Optional[bool] = None,
|
270 |
+
output_attentions: Optional[bool] = None,
|
271 |
+
output_hidden_states: Optional[bool] = None,
|
272 |
+
return_dict: Optional[bool] = None,
|
273 |
+
) -> Union[Tuple, TaiVisionCausalLMOutputWithPast]:
|
274 |
+
r"""
|
275 |
+
Args:
|
276 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
277 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
278 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
279 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
|
283 |
+
Example:
|
284 |
+
|
285 |
+
```python
|
286 |
+
>>> from PIL import Image
|
287 |
+
>>> import requests
|
288 |
+
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
289 |
+
|
290 |
+
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/PaliGemma-test-224px-hf")
|
291 |
+
>>> processor = AutoProcessor.from_pretrained("google/PaliGemma-test-224px-hf")
|
292 |
+
|
293 |
+
>>> prompt = "answer en Where is the cow standing?"
|
294 |
+
>>> url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
|
295 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
296 |
+
|
297 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
298 |
+
|
299 |
+
>>> # Generate
|
300 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
301 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
302 |
+
"answer en Where is the cow standing?\nbeach"
|
303 |
+
```"""
|
304 |
+
|
305 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
306 |
+
raise ValueError(
|
307 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
308 |
+
)
|
309 |
+
|
310 |
+
if pixel_values is not None and inputs_embeds is not None:
|
311 |
+
raise ValueError(
|
312 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
313 |
+
)
|
314 |
+
|
315 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
316 |
+
output_hidden_states = (
|
317 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
318 |
+
)
|
319 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
320 |
+
|
321 |
+
is_training = token_type_ids is not None and labels is not None
|
322 |
+
|
323 |
+
if inputs_embeds is None:
|
324 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
325 |
+
|
326 |
+
if cache_position is None:
|
327 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
328 |
+
cache_position = torch.arange(
|
329 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
330 |
+
)
|
331 |
+
|
332 |
+
if position_ids is None:
|
333 |
+
position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
|
334 |
+
|
335 |
+
# Merge text and images
|
336 |
+
if pixel_values is not None:
|
337 |
+
image_outputs = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
|
338 |
+
selected_image_feature = image_outputs.last_hidden_state
|
339 |
+
image_features = self.vision_projector(selected_image_feature)
|
340 |
+
image_features = image_features / (self.config.hidden_size**0.5)
|
341 |
+
|
342 |
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
|
343 |
+
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
344 |
+
image_tokens_in_text = torch.sum(input_ids == self.config.image_token_index)
|
345 |
+
raise ValueError(
|
346 |
+
f"Number of images does not match number of special image tokens in the input text. "
|
347 |
+
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
|
348 |
+
"tokens from image embeddings."
|
349 |
+
)
|
350 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
351 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
352 |
+
|
353 |
+
# mask out pad-token-ids in labels for BC
|
354 |
+
if labels is not None and self.pad_token_id in labels:
|
355 |
+
logger.warning_once(
|
356 |
+
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. ",
|
357 |
+
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
|
358 |
+
)
|
359 |
+
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
|
360 |
+
|
361 |
+
causal_mask = self._update_causal_mask(
|
362 |
+
attention_mask, token_type_ids, inputs_embeds, past_key_values, cache_position, is_training
|
363 |
+
)
|
364 |
+
|
365 |
+
outputs = self.language_model(
|
366 |
+
attention_mask=causal_mask,
|
367 |
+
position_ids=position_ids,
|
368 |
+
past_key_values=past_key_values,
|
369 |
+
inputs_embeds=inputs_embeds,
|
370 |
+
use_cache=use_cache,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
output_hidden_states=output_hidden_states,
|
373 |
+
return_dict=return_dict,
|
374 |
+
cache_position=cache_position,
|
375 |
+
)
|
376 |
+
|
377 |
+
logits = outputs.logits
|
378 |
+
logits = logits.float()
|
379 |
+
loss = None
|
380 |
+
if labels is not None:
|
381 |
+
shift_logits = logits[..., :-1, :]
|
382 |
+
shift_labels = labels[..., 1:]
|
383 |
+
if attention_mask is not None:
|
384 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
385 |
+
shift_attention_mask = attention_mask[..., 1:]
|
386 |
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
387 |
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
388 |
+
else:
|
389 |
+
shift_logits = shift_logits.contiguous()
|
390 |
+
shift_labels = shift_labels.contiguous()
|
391 |
+
# Flatten the tokens
|
392 |
+
loss_fct = nn.CrossEntropyLoss()
|
393 |
+
|
394 |
+
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
395 |
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
396 |
+
loss = loss_fct(flat_logits, flat_labels)
|
397 |
+
if not return_dict:
|
398 |
+
output = (logits,) + outputs[1:]
|
399 |
+
return (loss,) + output if loss is not None else output
|
400 |
+
|
401 |
+
return TaiVisionCausalLMOutputWithPast(
|
402 |
+
loss=loss,
|
403 |
+
logits=logits,
|
404 |
+
past_key_values=outputs.past_key_values,
|
405 |
+
hidden_states=outputs.hidden_states,
|
406 |
+
attentions=outputs.attentions,
|
407 |
+
)
|
408 |
+
|
409 |
+
def prepare_inputs_for_generation(
|
410 |
+
self,
|
411 |
+
input_ids,
|
412 |
+
past_key_values=None,
|
413 |
+
inputs_embeds=None,
|
414 |
+
cache_position=None,
|
415 |
+
position_ids=None,
|
416 |
+
pixel_values=None,
|
417 |
+
attention_mask=None,
|
418 |
+
token_type_ids=None,
|
419 |
+
use_cache=True,
|
420 |
+
**kwargs,
|
421 |
+
):
|
422 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
423 |
+
input_ids,
|
424 |
+
past_key_values=past_key_values,
|
425 |
+
inputs_embeds=inputs_embeds,
|
426 |
+
attention_mask=attention_mask,
|
427 |
+
cache_position=cache_position,
|
428 |
+
**kwargs,
|
429 |
+
)
|
430 |
+
|
431 |
+
model_inputs["token_type_ids"] = token_type_ids
|
432 |
+
|
433 |
+
# position_ids in Paligemma are 1-indexed
|
434 |
+
if model_inputs.get("position_ids") is not None:
|
435 |
+
model_inputs["position_ids"] += 1
|
436 |
+
|
437 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
438 |
+
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
|
439 |
+
if cache_position[0] == 0:
|
440 |
+
model_inputs["pixel_values"] = pixel_values
|
441 |
+
|
442 |
+
return model_inputs
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
if __name__ == '__main__':
|
447 |
+
import transformers
|
448 |
+
config = transformers.AutoConfig.from_pretrained("benchang1110/TaiVision-base",trust_remote_code=True)
|
449 |
+
model = TaiVisionForCausalLM(config).to("cuda")
|
450 |
+
print(model)
|
451 |
+
model.save_pretrained
|
452 |
+
# Test forward
|
453 |
+
import torch
|
454 |
+
from PIL import Image
|
455 |
+
import requests
|
456 |
+
# Initialize processor
|
457 |
+
processor = transformers.AutoProcessor.from_pretrained("benchang1110/TaiVision-base", trust_remote_code=True)
|
458 |
+
|
459 |
+
# Load image
|
460 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
|
461 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
462 |
+
|
463 |
+
# Define prompt and label
|
464 |
+
prompt = "What is the color of the car?"
|
465 |
+
label = "I am fine, thank you."
|
466 |
+
|
467 |
+
# Process inputs
|
468 |
+
inputs = processor(prompts=prompt,images=image, return_tensors="pt", padding=False, max_length=512).to('cuda')
|
469 |
+
|
470 |
+
outputs = model.generate(**inputs, max_length=512, do_sample=True, pad_token_id=processor.tokenizer.pad_token_id)
|
471 |
+
print(processor.decode(outputs[0], skip_special_tokens=True))
|
472 |
+
|