--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: CTMAE2_CS_V7_2 results: [] --- # CTMAE2_CS_V7_2 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7423 - Accuracy: 0.7778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12950 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 0.5325 | 0.0201 | 260 | 0.8741 | 0.4667 | | 0.5015 | 1.0201 | 520 | 0.9818 | 0.4444 | | 0.5515 | 2.0201 | 780 | 0.7134 | 0.5111 | | 0.3752 | 3.0201 | 1040 | 0.7412 | 0.6222 | | 0.3128 | 4.0201 | 1300 | 0.8534 | 0.6 | | 0.7261 | 5.0201 | 1560 | 0.7002 | 0.7111 | | 0.4644 | 6.0201 | 1820 | 0.6550 | 0.7111 | | 0.7702 | 7.0201 | 2080 | 0.6853 | 0.7333 | | 0.4589 | 8.0201 | 2340 | 0.7447 | 0.7556 | | 0.5026 | 9.0201 | 2600 | 0.7423 | 0.7778 | | 0.5612 | 10.0201 | 2860 | 0.8798 | 0.6889 | | 0.536 | 11.0201 | 3120 | 1.5358 | 0.4889 | | 0.6695 | 12.0201 | 3380 | 1.3352 | 0.6667 | | 0.2699 | 13.0201 | 3640 | 1.1053 | 0.7333 | | 0.5277 | 14.0201 | 3900 | 0.9908 | 0.7111 | | 0.7975 | 15.0201 | 4160 | 1.0846 | 0.6667 | | 0.5766 | 16.0201 | 4420 | 0.9612 | 0.7333 | | 0.3323 | 17.0201 | 4680 | 1.1611 | 0.6889 | | 0.7162 | 18.0201 | 4940 | 1.3055 | 0.7111 | | 0.1248 | 19.0201 | 5200 | 1.5837 | 0.6667 | | 0.1746 | 20.0201 | 5460 | 1.2694 | 0.7333 | | 0.1973 | 21.0201 | 5720 | 1.1572 | 0.7778 | | 0.7038 | 22.0201 | 5980 | 1.4035 | 0.7111 | | 0.3939 | 23.0201 | 6240 | 1.6775 | 0.6667 | | 0.4129 | 24.0201 | 6500 | 1.6039 | 0.6889 | | 0.2852 | 25.0201 | 6760 | 1.6769 | 0.7111 | | 0.3278 | 26.0201 | 7020 | 1.9129 | 0.6889 | | 0.7677 | 27.0201 | 7280 | 1.8397 | 0.6667 | | 0.0122 | 28.0201 | 7540 | 2.0296 | 0.6889 | | 0.3014 | 29.0201 | 7800 | 2.4234 | 0.6 | | 0.3567 | 30.0201 | 8060 | 1.7570 | 0.7111 | | 0.0334 | 31.0201 | 8320 | 2.0343 | 0.7111 | | 0.0043 | 32.0201 | 8580 | 1.8095 | 0.7333 | | 0.0119 | 33.0201 | 8840 | 1.6490 | 0.7556 | | 0.7503 | 34.0201 | 9100 | 1.9144 | 0.6889 | | 0.2105 | 35.0201 | 9360 | 1.8403 | 0.7333 | | 0.003 | 36.0201 | 9620 | 1.8770 | 0.7333 | | 0.1781 | 37.0201 | 9880 | 1.8631 | 0.7333 | | 0.4092 | 38.0201 | 10140 | 1.9994 | 0.7111 | | 0.232 | 39.0201 | 10400 | 1.9919 | 0.6889 | | 0.2703 | 40.0201 | 10660 | 2.1008 | 0.7111 | | 0.5169 | 41.0201 | 10920 | 2.2019 | 0.6889 | | 0.8418 | 42.0201 | 11180 | 2.2000 | 0.6889 | | 0.0007 | 43.0201 | 11440 | 2.0411 | 0.7111 | | 0.0001 | 44.0201 | 11700 | 2.1081 | 0.6889 | | 0.0004 | 45.0201 | 11960 | 2.1821 | 0.6889 | | 0.0013 | 46.0201 | 12220 | 2.1313 | 0.7111 | | 0.0003 | 47.0201 | 12480 | 2.2113 | 0.7111 | | 0.83 | 48.0201 | 12740 | 2.2048 | 0.6889 | | 0.0001 | 49.0162 | 12950 | 2.1997 | 0.6889 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0