Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -2,246 +2,246 @@
|
|
2 |
license: mit
|
3 |
library_name: sklearn
|
4 |
tags:
|
5 |
-
- sklearn
|
6 |
-
- skops
|
7 |
-
- tabular-classification
|
8 |
model_format: skops
|
9 |
model_file: local_compartment_classifier_bd_boxes.skops
|
10 |
widget:
|
11 |
-
- structuredData:
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
---
|
241 |
|
242 |
# Model description
|
243 |
|
244 |
-
|
245 |
|
246 |
## Intended uses & limitations
|
247 |
|
@@ -256,26 +256,26 @@ widget:
|
|
256 |
<details>
|
257 |
<summary> Click to expand </summary>
|
258 |
|
259 |
-
| Hyperparameter
|
260 |
-
|
261 |
-
| memory
|
262 |
-
| steps
|
263 |
-
| verbose
|
264 |
-
| transformer
|
265 |
-
| lda
|
266 |
-
|
|
267 |
-
|
|
268 |
-
|
|
269 |
-
|
|
270 |
-
|
|
271 |
-
|
|
272 |
-
|
|
273 |
-
|
|
274 |
-
|
|
275 |
-
|
|
276 |
-
|
|
277 |
-
|
|
278 |
-
|
|
279 |
|
280 |
</details>
|
281 |
|
@@ -361,53 +361,28 @@ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
|
361 |
|
362 |
## Evaluation Results
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
# How to Get Started with the Model
|
367 |
-
|
368 |
-
[More Information Needed]
|
369 |
-
|
370 |
-
# Model Card Authors
|
371 |
-
|
372 |
-
This model card is written by following authors:
|
373 |
-
|
374 |
-
[More Information Needed]
|
375 |
|
376 |
-
|
|
|
|
|
|
|
|
|
377 |
|
378 |
-
|
379 |
-
[More Information Needed]
|
380 |
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
-
|
384 |
|
385 |
-
**BibTeX:**
|
386 |
-
```
|
387 |
[More Information Needed]
|
388 |
-
```
|
389 |
-
|
390 |
-
# model_card_authors
|
391 |
-
|
392 |
-
bdpedigo
|
393 |
-
|
394 |
-
# model_description
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
# Classification Report (overall)
|
399 |
-
|
400 |
-
| type | precision | recall | f1-score | support |
|
401 |
-
|--------------|-------------|----------|------------|--------------|
|
402 |
-
| accuracy | 0.944357 | 0.944357 | 0.944357 | 0.944357 |
|
403 |
-
| macro avg | 0.854825 | 0.917289 | 0.878753 | 31307 |
|
404 |
-
| weighted avg | 0.946879 | 0.944357 | 0.945155 | 31307 |
|
405 |
-
|
406 |
-
# Classification Report (by class)
|
407 |
|
408 |
-
|
409 |
-
|
410 |
-
| axon | 0.956309 | 0.964704 | 0.960488 | 16404 |
|
411 |
-
| dendrite | 0.928038 | 0.911341 | 0.919614 | 6948 |
|
412 |
-
| glia | 0.964442 | 0.935279 | 0.949636 | 7540 |
|
413 |
-
| soma | 0.570513 | 0.857831 | 0.685274 | 415 |
|
|
|
2 |
license: mit
|
3 |
library_name: sklearn
|
4 |
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-classification
|
8 |
model_format: skops
|
9 |
model_file: local_compartment_classifier_bd_boxes.skops
|
10 |
widget:
|
11 |
+
- structuredData:
|
12 |
+
area_nm2:
|
13 |
+
- 693824.0
|
14 |
+
- 4852608.0
|
15 |
+
- 17088896.0
|
16 |
+
area_nm2_neighbor_mean:
|
17 |
+
- 10181485.714285716
|
18 |
+
- 9884429.714285716
|
19 |
+
- 9010409.142857144
|
20 |
+
area_nm2_neighbor_std:
|
21 |
+
- 8312409.263207569
|
22 |
+
- 8587259.418816902
|
23 |
+
- 8418630.640116522
|
24 |
+
max_dt_nm:
|
25 |
+
- 69.0
|
26 |
+
- 543.0
|
27 |
+
- 1287.0
|
28 |
+
max_dt_nm_neighbor_mean:
|
29 |
+
- 664.7142857142857
|
30 |
+
- 630.8571428571429
|
31 |
+
- 577.7142857142857
|
32 |
+
max_dt_nm_neighbor_std:
|
33 |
+
- 479.64240342658945
|
34 |
+
- 504.9563358340017
|
35 |
+
- 468.41868657651344
|
36 |
+
mean_dt_nm:
|
37 |
+
- 24.4375
|
38 |
+
- 156.5
|
39 |
+
- 416.0
|
40 |
+
mean_dt_nm_neighbor_mean:
|
41 |
+
- 198.62946428571428
|
42 |
+
- 189.19642857142856
|
43 |
+
- 170.66071428571428
|
44 |
+
mean_dt_nm_neighbor_std:
|
45 |
+
- 150.614304054458
|
46 |
+
- 157.4368957825056
|
47 |
+
- 143.32375093543624
|
48 |
+
pca_ratio_01:
|
49 |
+
- 1.3849340770961909
|
50 |
+
- 1.181656878273399
|
51 |
+
- 1.128046800200765
|
52 |
+
pca_ratio_01_neighbor_mean:
|
53 |
+
- 1.8575624906424115
|
54 |
+
- 1.8760422359899387
|
55 |
+
- 1.880915879451087
|
56 |
+
pca_ratio_01_neighbor_std:
|
57 |
+
- 0.641580757345606
|
58 |
+
- 0.6228187048854344
|
59 |
+
- 0.6165585104590592
|
60 |
+
pca_unwrapped_0:
|
61 |
+
- -0.0046539306640625
|
62 |
+
- -0.497314453125
|
63 |
+
- -0.258544921875
|
64 |
+
pca_unwrapped_0_neighbor_mean:
|
65 |
+
- 0.039224624633789
|
66 |
+
- 0.0840119448575106
|
67 |
+
- 0.0623056238347833
|
68 |
+
pca_unwrapped_0_neighbor_std:
|
69 |
+
- 0.3114910605258688
|
70 |
+
- 0.2573427692683507
|
71 |
+
- 0.296254177168357
|
72 |
+
pca_unwrapped_1:
|
73 |
+
- 0.7392578125
|
74 |
+
- -0.11553955078125
|
75 |
+
- 0.2169189453125
|
76 |
+
pca_unwrapped_1_neighbor_mean:
|
77 |
+
- 0.0941687497225674
|
78 |
+
- 0.1718776009299538
|
79 |
+
- 0.1416541012850674
|
80 |
+
pca_unwrapped_1_neighbor_std:
|
81 |
+
- 0.3179467337379631
|
82 |
+
- 0.3628551035117971
|
83 |
+
- 0.372447324946889
|
84 |
+
pca_unwrapped_2:
|
85 |
+
- -0.673828125
|
86 |
+
- -0.85986328125
|
87 |
+
- 0.94140625
|
88 |
+
pca_unwrapped_2_neighbor_mean:
|
89 |
+
- 0.2258744673295454
|
90 |
+
- 0.2427867542613636
|
91 |
+
- 0.0790349786931818
|
92 |
+
pca_unwrapped_2_neighbor_std:
|
93 |
+
- 0.9134250264562896
|
94 |
+
- 0.8928014788058292
|
95 |
+
- 0.9167197839332804
|
96 |
+
pca_unwrapped_3:
|
97 |
+
- -0.0302886962890625
|
98 |
+
- -0.86572265625
|
99 |
+
- 0.57177734375
|
100 |
+
pca_unwrapped_3_neighbor_mean:
|
101 |
+
- -0.2933238636363636
|
102 |
+
- -0.2173753218217329
|
103 |
+
- -0.3480571400035511
|
104 |
+
pca_unwrapped_3_neighbor_std:
|
105 |
+
- 0.6203425764161097
|
106 |
+
- 0.5938304683645145
|
107 |
+
- 0.5600074530240728
|
108 |
+
pca_unwrapped_4:
|
109 |
+
- 0.67333984375
|
110 |
+
- -0.0005474090576171
|
111 |
+
- 0.81982421875
|
112 |
+
pca_unwrapped_4_neighbor_mean:
|
113 |
+
- 0.2915762121027166
|
114 |
+
- 0.3528386896306818
|
115 |
+
- 0.2782594507390802
|
116 |
+
pca_unwrapped_4_neighbor_std:
|
117 |
+
- 0.6415192812587974
|
118 |
+
- 0.6430080201673403
|
119 |
+
- 0.6308895861182334
|
120 |
+
pca_unwrapped_5:
|
121 |
+
- 0.73876953125
|
122 |
+
- 0.50048828125
|
123 |
+
- -0.03192138671875
|
124 |
+
pca_unwrapped_5_neighbor_mean:
|
125 |
+
- 0.2028697620738636
|
126 |
+
- 0.2245316938920454
|
127 |
+
- 0.2729325727982954
|
128 |
+
pca_unwrapped_5_neighbor_std:
|
129 |
+
- 0.265173781606759
|
130 |
+
- 0.2994363858938455
|
131 |
+
- 0.2968562365279343
|
132 |
+
pca_unwrapped_6:
|
133 |
+
- 0.99951171875
|
134 |
+
- 0.05828857421875
|
135 |
+
- -0.77880859375
|
136 |
+
pca_unwrapped_6_neighbor_mean:
|
137 |
+
- -0.2386505820534446
|
138 |
+
- -0.1530848416415128
|
139 |
+
- -0.0769850990988991
|
140 |
+
pca_unwrapped_6_neighbor_std:
|
141 |
+
- 0.6776577717043619
|
142 |
+
- 0.7717860533115238
|
143 |
+
- 0.7447135522384378
|
144 |
+
pca_unwrapped_7:
|
145 |
+
- 0.023834228515625
|
146 |
+
- -0.9931640625
|
147 |
+
- 0.52978515625
|
148 |
+
pca_unwrapped_7_neighbor_mean:
|
149 |
+
- -0.4803272594105113
|
150 |
+
- -0.3878728693181818
|
151 |
+
- -0.5263227982954546
|
152 |
+
pca_unwrapped_7_neighbor_std:
|
153 |
+
- 0.4799926318285017
|
154 |
+
- 0.4691567465869561
|
155 |
+
- 0.3891669942534205
|
156 |
+
pca_unwrapped_8:
|
157 |
+
- 0.0192413330078125
|
158 |
+
- 0.0997314453125
|
159 |
+
- -0.3359375
|
160 |
+
pca_unwrapped_8_neighbor_mean:
|
161 |
+
- -0.0384375832297585
|
162 |
+
- -0.0457548661665482
|
163 |
+
- -0.0061485984108664
|
164 |
+
pca_unwrapped_8_neighbor_std:
|
165 |
+
- 0.3037878488292577
|
166 |
+
- 0.3010843368506175
|
167 |
+
- 0.2874409267860334
|
168 |
+
pca_val_unwrapped_0:
|
169 |
+
- 15657.09765625
|
170 |
+
- 40668.40625
|
171 |
+
- 66863.0
|
172 |
+
pca_val_unwrapped_0_neighbor_mean:
|
173 |
+
- 69378.52059659091
|
174 |
+
- 67104.76526988637
|
175 |
+
- 64723.43856534091
|
176 |
+
pca_val_unwrapped_0_neighbor_std:
|
177 |
+
- 20242.245019019712
|
178 |
+
- 24702.906417865197
|
179 |
+
- 25959.16138296664
|
180 |
+
pca_val_unwrapped_1:
|
181 |
+
- 11305.3017578125
|
182 |
+
- 34416.42578125
|
183 |
+
- 59273.25
|
184 |
+
pca_val_unwrapped_1_neighbor_mean:
|
185 |
+
- 41190.40261008523
|
186 |
+
- 39089.39133522727
|
187 |
+
- 36829.68004261364
|
188 |
+
pca_val_unwrapped_1_neighbor_std:
|
189 |
+
- 16625.870141811894
|
190 |
+
- 18875.56976212627
|
191 |
+
- 17666.778281657556
|
192 |
+
pca_val_unwrapped_2:
|
193 |
+
- 1270.4095458984375
|
194 |
+
- 13551.6748046875
|
195 |
+
- 47764.625
|
196 |
+
pca_val_unwrapped_2_neighbor_mean:
|
197 |
+
- 28717.50048828125
|
198 |
+
- 27601.021828391335
|
199 |
+
- 24490.75362881747
|
200 |
+
pca_val_unwrapped_2_neighbor_std:
|
201 |
+
- 14988.204981576571
|
202 |
+
- 16601.48080038032
|
203 |
+
- 15622.078784778376
|
204 |
+
post_synapse_count:
|
205 |
+
- 0.0
|
206 |
+
- 0.0
|
207 |
+
- 0.0
|
208 |
+
post_synapse_count_neighbor_mean:
|
209 |
+
- 0.0
|
210 |
+
- 0.0
|
211 |
+
- 0.0
|
212 |
+
post_synapse_count_neighbor_std:
|
213 |
+
- 0.0
|
214 |
+
- 0.0
|
215 |
+
- 0.0
|
216 |
+
pre_synapse_count:
|
217 |
+
- 0.0
|
218 |
+
- 0.0
|
219 |
+
- 0.0
|
220 |
+
pre_synapse_count_neighbor_mean:
|
221 |
+
- 0.0
|
222 |
+
- 0.0
|
223 |
+
- 0.0
|
224 |
+
pre_synapse_count_neighbor_std:
|
225 |
+
- 0.0
|
226 |
+
- 0.0
|
227 |
+
- 0.0
|
228 |
+
size_nm3:
|
229 |
+
- 12771840.0
|
230 |
+
- 697943040.0
|
231 |
+
- 7550330880.0
|
232 |
+
size_nm3_neighbor_mean:
|
233 |
+
- 3233702034.285714
|
234 |
+
- 3184761234.285714
|
235 |
+
- 2695304960.0
|
236 |
+
size_nm3_neighbor_std:
|
237 |
+
- 3650678969.7909584
|
238 |
+
- 3691650923.5639486
|
239 |
+
- 3518520747.0511127
|
240 |
---
|
241 |
|
242 |
# Model description
|
243 |
|
244 |
+
This is a model trained to classify pieces of neuron as axon, dendrite, soma, orglia, based only on their local shape and synapse features.The model is a linear discriminant classifier which was trained on compartment labels generated by Bethanny Danskin for 3 6x6x6 um boxes in the Minnie65 Phase3 dataset.
|
245 |
|
246 |
## Intended uses & limitations
|
247 |
|
|
|
256 |
<details>
|
257 |
<summary> Click to expand </summary>
|
258 |
|
259 |
+
| Hyperparameter | Value |
|
260 |
+
| ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------- |
|
261 |
+
| memory | |
|
262 |
+
| steps | [('transformer', QuantileTransformer(output_distribution='normal')), ('lda', LinearDiscriminantAnalysis(n_components=3))] |
|
263 |
+
| verbose | False |
|
264 |
+
| transformer | QuantileTransformer(output_distribution='normal') |
|
265 |
+
| lda | LinearDiscriminantAnalysis(n_components=3) |
|
266 |
+
| transformer\_\_copy | True |
|
267 |
+
| transformer\_\_ignore_implicit_zeros | False |
|
268 |
+
| transformer\_\_n_quantiles | 1000 |
|
269 |
+
| transformer\_\_output_distribution | normal |
|
270 |
+
| transformer\_\_random_state | |
|
271 |
+
| transformer\_\_subsample | 10000 |
|
272 |
+
| lda\_\_covariance_estimator | |
|
273 |
+
| lda\_\_n_components | 3 |
|
274 |
+
| lda\_\_priors | |
|
275 |
+
| lda\_\_shrinkage | |
|
276 |
+
| lda\_\_solver | svd |
|
277 |
+
| lda\_\_store_covariance | False |
|
278 |
+
| lda\_\_tol | 0.0001 |
|
279 |
|
280 |
</details>
|
281 |
|
|
|
361 |
|
362 |
## Evaluation Results
|
363 |
|
364 |
+
### Classification Report (overall)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
+
| type | precision | recall | f1-score | support |
|
367 |
+
| ------------ | --------- | -------- | -------- | -------- |
|
368 |
+
| accuracy | 0.944357 | 0.944357 | 0.944357 | 0.944357 |
|
369 |
+
| macro avg | 0.854825 | 0.917289 | 0.878753 | 31307 |
|
370 |
+
| weighted avg | 0.946879 | 0.944357 | 0.945155 | 31307 |
|
371 |
|
372 |
+
### Classification Report (by class)
|
|
|
373 |
|
374 |
+
| class | precision | recall | f1-score | support |
|
375 |
+
| -------- | --------- | -------- | -------- | ------- |
|
376 |
+
| axon | 0.956309 | 0.964704 | 0.960488 | 16404 |
|
377 |
+
| dendrite | 0.928038 | 0.911341 | 0.919614 | 6948 |
|
378 |
+
| glia | 0.964442 | 0.935279 | 0.949636 | 7540 |
|
379 |
+
| soma | 0.570513 | 0.857831 | 0.685274 | 415 |
|
380 |
|
381 |
+
# How to Get Started with the Model
|
382 |
|
|
|
|
|
383 |
[More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
+
# Model Card Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
+
Ben Pedigo
|
388 |
+
Bethanny Danskin
|
|
|
|
|
|
|
|
train.py
CHANGED
@@ -305,6 +305,7 @@ with open(model_pickle_file, mode="bw") as f:
|
|
305 |
dump(final_lda, file=f)
|
306 |
|
307 |
# %%
|
|
|
308 |
from pathlib import Path
|
309 |
|
310 |
from skops import card, hub_utils
|
@@ -323,8 +324,8 @@ if not hub_out_path.exists():
|
|
323 |
|
324 |
hub_utils.add_files(__file__, dst=hub_out_path, exist_ok=True)
|
325 |
|
326 |
-
# if
|
327 |
-
if
|
328 |
model_card = card.Card(model, metadata=card.metadata_from_config(hub_out_path))
|
329 |
model_card.metadata.license = "mit"
|
330 |
model_description = (
|
|
|
305 |
dump(final_lda, file=f)
|
306 |
|
307 |
# %%
|
308 |
+
import os
|
309 |
from pathlib import Path
|
310 |
|
311 |
from skops import card, hub_utils
|
|
|
324 |
|
325 |
hub_utils.add_files(__file__, dst=hub_out_path, exist_ok=True)
|
326 |
|
327 |
+
# if True:
|
328 |
+
if not os.path.exists(hub_out_path / "README.md"):
|
329 |
model_card = card.Card(model, metadata=card.metadata_from_config(hub_out_path))
|
330 |
model_card.metadata.license = "mit"
|
331 |
model_description = (
|