--- base_model: Snowflake/snowflake-arctic-embed-l license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - arctic - snowflake-arctic-embed - transformers.js - llama-cpp - gguf-my-repo model-index: - name: snowflake-arctic-embed-l results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.80597014925374 - type: ap value: 37.911466766189875 - type: f1 value: 68.88606927542106 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 78.402275 - type: ap value: 73.03294793248114 - type: f1 value: 78.3147786132161 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 36.717999999999996 - type: f1 value: 35.918044248787766 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 34.495 - type: map_at_10 value: 50.236000000000004 - type: map_at_100 value: 50.944 - type: map_at_1000 value: 50.94499999999999 - type: map_at_3 value: 45.341 - type: map_at_5 value: 48.286 - type: mrr_at_1 value: 35.135 - type: mrr_at_10 value: 50.471 - type: mrr_at_100 value: 51.185 - type: mrr_at_1000 value: 51.187000000000005 - type: mrr_at_3 value: 45.602 - type: mrr_at_5 value: 48.468 - type: ndcg_at_1 value: 34.495 - type: ndcg_at_10 value: 59.086000000000006 - type: ndcg_at_100 value: 61.937 - type: ndcg_at_1000 value: 61.966 - type: ndcg_at_3 value: 49.062 - type: ndcg_at_5 value: 54.367 - type: precision_at_1 value: 34.495 - type: precision_at_10 value: 8.734 - type: precision_at_100 value: 0.9939999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.962 - type: precision_at_5 value: 14.552000000000001 - type: recall_at_1 value: 34.495 - type: recall_at_10 value: 87.33999999999999 - type: recall_at_100 value: 99.431 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 59.885999999999996 - type: recall_at_5 value: 72.76 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.46440874635501 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 38.28720154213723 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.34614226394902 - type: mrr value: 75.05628105351096 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 87.41072716728198 - type: cos_sim_spearman value: 86.34534093114372 - type: euclidean_pearson value: 85.34009667750838 - type: euclidean_spearman value: 86.34534093114372 - type: manhattan_pearson value: 85.2158833586889 - type: manhattan_spearman value: 86.60920236509224 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 80.06493506493507 - type: f1 value: 79.28108600339833 - task: type: Clustering dataset: name: MTEB BigPatentClustering type: jinaai/big-patent-clustering config: default split: test revision: 62d5330920bca426ce9d3c76ea914f15fc83e891 metrics: - type: v_measure value: 20.545049432417287 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.54369718479804 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 32.64941588219162 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 37.264 - type: map_at_10 value: 49.43 - type: map_at_100 value: 50.967 - type: map_at_1000 value: 51.08200000000001 - type: map_at_3 value: 45.742 - type: map_at_5 value: 47.764 - type: mrr_at_1 value: 44.921 - type: mrr_at_10 value: 54.879999999999995 - type: mrr_at_100 value: 55.525000000000006 - type: mrr_at_1000 value: 55.565 - type: mrr_at_3 value: 52.480000000000004 - type: mrr_at_5 value: 53.86 - type: ndcg_at_1 value: 44.921 - type: ndcg_at_10 value: 55.664 - type: ndcg_at_100 value: 60.488 - type: ndcg_at_1000 value: 62.138000000000005 - type: ndcg_at_3 value: 50.797000000000004 - type: ndcg_at_5 value: 52.94799999999999 - type: precision_at_1 value: 44.921 - type: precision_at_10 value: 10.587 - type: precision_at_100 value: 1.629 - type: precision_at_1000 value: 0.203 - type: precision_at_3 value: 24.034 - type: precision_at_5 value: 17.224999999999998 - type: recall_at_1 value: 37.264 - type: recall_at_10 value: 67.15 - type: recall_at_100 value: 86.811 - type: recall_at_1000 value: 97.172 - type: recall_at_3 value: 53.15800000000001 - type: recall_at_5 value: 59.116 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 36.237 - type: map_at_10 value: 47.941 - type: map_at_100 value: 49.131 - type: map_at_1000 value: 49.26 - type: map_at_3 value: 44.561 - type: map_at_5 value: 46.28 - type: mrr_at_1 value: 45.605000000000004 - type: mrr_at_10 value: 54.039 - type: mrr_at_100 value: 54.653 - type: mrr_at_1000 value: 54.688 - type: mrr_at_3 value: 52.006 - type: mrr_at_5 value: 53.096 - type: ndcg_at_1 value: 45.605000000000004 - type: ndcg_at_10 value: 53.916 - type: ndcg_at_100 value: 57.745999999999995 - type: ndcg_at_1000 value: 59.492999999999995 - type: ndcg_at_3 value: 49.774 - type: ndcg_at_5 value: 51.434999999999995 - type: precision_at_1 value: 45.605000000000004 - type: precision_at_10 value: 10.229000000000001 - type: precision_at_100 value: 1.55 - type: precision_at_1000 value: 0.2 - type: precision_at_3 value: 24.098 - type: precision_at_5 value: 16.726 - type: recall_at_1 value: 36.237 - type: recall_at_10 value: 64.03 - type: recall_at_100 value: 80.423 - type: recall_at_1000 value: 91.03 - type: recall_at_3 value: 51.20400000000001 - type: recall_at_5 value: 56.298 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 47.278 - type: map_at_10 value: 59.757000000000005 - type: map_at_100 value: 60.67 - type: map_at_1000 value: 60.714 - type: map_at_3 value: 56.714 - type: map_at_5 value: 58.453 - type: mrr_at_1 value: 53.73 - type: mrr_at_10 value: 62.970000000000006 - type: mrr_at_100 value: 63.507999999999996 - type: mrr_at_1000 value: 63.53 - type: mrr_at_3 value: 60.909 - type: mrr_at_5 value: 62.172000000000004 - type: ndcg_at_1 value: 53.73 - type: ndcg_at_10 value: 64.97 - type: ndcg_at_100 value: 68.394 - type: ndcg_at_1000 value: 69.255 - type: ndcg_at_3 value: 60.228 - type: ndcg_at_5 value: 62.617999999999995 - type: precision_at_1 value: 53.73 - type: precision_at_10 value: 10.056 - type: precision_at_100 value: 1.265 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 26.332 - type: precision_at_5 value: 17.743000000000002 - type: recall_at_1 value: 47.278 - type: recall_at_10 value: 76.86500000000001 - type: recall_at_100 value: 91.582 - type: recall_at_1000 value: 97.583 - type: recall_at_3 value: 64.443 - type: recall_at_5 value: 70.283 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 29.702 - type: map_at_10 value: 39.463 - type: map_at_100 value: 40.508 - type: map_at_1000 value: 40.579 - type: map_at_3 value: 36.748999999999995 - type: map_at_5 value: 38.296 - type: mrr_at_1 value: 31.977 - type: mrr_at_10 value: 41.739 - type: mrr_at_100 value: 42.586 - type: mrr_at_1000 value: 42.636 - type: mrr_at_3 value: 39.096 - type: mrr_at_5 value: 40.695 - type: ndcg_at_1 value: 31.977 - type: ndcg_at_10 value: 44.855000000000004 - type: ndcg_at_100 value: 49.712 - type: ndcg_at_1000 value: 51.443000000000005 - type: ndcg_at_3 value: 39.585 - type: ndcg_at_5 value: 42.244 - type: precision_at_1 value: 31.977 - type: precision_at_10 value: 6.768000000000001 - type: precision_at_100 value: 0.9690000000000001 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 16.761 - type: precision_at_5 value: 11.593 - type: recall_at_1 value: 29.702 - type: recall_at_10 value: 59.082 - type: recall_at_100 value: 80.92 - type: recall_at_1000 value: 93.728 - type: recall_at_3 value: 45.212 - type: recall_at_5 value: 51.449 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 21.336 - type: map_at_10 value: 30.137999999999998 - type: map_at_100 value: 31.385 - type: map_at_1000 value: 31.495 - type: map_at_3 value: 27.481 - type: map_at_5 value: 28.772 - type: mrr_at_1 value: 25.871 - type: mrr_at_10 value: 34.686 - type: mrr_at_100 value: 35.649 - type: mrr_at_1000 value: 35.705 - type: mrr_at_3 value: 32.09 - type: mrr_at_5 value: 33.52 - type: ndcg_at_1 value: 25.871 - type: ndcg_at_10 value: 35.617 - type: ndcg_at_100 value: 41.272999999999996 - type: ndcg_at_1000 value: 43.725 - type: ndcg_at_3 value: 30.653999999999996 - type: ndcg_at_5 value: 32.714 - type: precision_at_1 value: 25.871 - type: precision_at_10 value: 6.4799999999999995 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 14.469000000000001 - type: precision_at_5 value: 10.274 - type: recall_at_1 value: 21.336 - type: recall_at_10 value: 47.746 - type: recall_at_100 value: 71.773 - type: recall_at_1000 value: 89.05199999999999 - type: recall_at_3 value: 34.172999999999995 - type: recall_at_5 value: 39.397999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 34.424 - type: map_at_10 value: 45.647999999999996 - type: map_at_100 value: 46.907 - type: map_at_1000 value: 47.010999999999996 - type: map_at_3 value: 42.427 - type: map_at_5 value: 44.285000000000004 - type: mrr_at_1 value: 41.867 - type: mrr_at_10 value: 51.17699999999999 - type: mrr_at_100 value: 51.937 - type: mrr_at_1000 value: 51.975 - type: mrr_at_3 value: 48.941 - type: mrr_at_5 value: 50.322 - type: ndcg_at_1 value: 41.867 - type: ndcg_at_10 value: 51.534 - type: ndcg_at_100 value: 56.696999999999996 - type: ndcg_at_1000 value: 58.475 - type: ndcg_at_3 value: 46.835 - type: ndcg_at_5 value: 49.161 - type: precision_at_1 value: 41.867 - type: precision_at_10 value: 9.134 - type: precision_at_100 value: 1.362 - type: precision_at_1000 value: 0.17099999999999999 - type: precision_at_3 value: 22.073 - type: precision_at_5 value: 15.495999999999999 - type: recall_at_1 value: 34.424 - type: recall_at_10 value: 63.237 - type: recall_at_100 value: 84.774 - type: recall_at_1000 value: 95.987 - type: recall_at_3 value: 49.888 - type: recall_at_5 value: 55.940999999999995 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 30.72 - type: map_at_10 value: 41.327999999999996 - type: map_at_100 value: 42.651 - type: map_at_1000 value: 42.739 - type: map_at_3 value: 38.223 - type: map_at_5 value: 40.053 - type: mrr_at_1 value: 37.9 - type: mrr_at_10 value: 46.857 - type: mrr_at_100 value: 47.673 - type: mrr_at_1000 value: 47.711999999999996 - type: mrr_at_3 value: 44.292 - type: mrr_at_5 value: 45.845 - type: ndcg_at_1 value: 37.9 - type: ndcg_at_10 value: 47.105999999999995 - type: ndcg_at_100 value: 52.56999999999999 - type: ndcg_at_1000 value: 54.37800000000001 - type: ndcg_at_3 value: 42.282 - type: ndcg_at_5 value: 44.646 - type: precision_at_1 value: 37.9 - type: precision_at_10 value: 8.368 - type: precision_at_100 value: 1.283 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 20.015 - type: precision_at_5 value: 14.132 - type: recall_at_1 value: 30.72 - type: recall_at_10 value: 58.826 - type: recall_at_100 value: 82.104 - type: recall_at_1000 value: 94.194 - type: recall_at_3 value: 44.962999999999994 - type: recall_at_5 value: 51.426 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 31.656583333333334 - type: map_at_10 value: 41.59883333333333 - type: map_at_100 value: 42.80350000000001 - type: map_at_1000 value: 42.91075 - type: map_at_3 value: 38.68908333333333 - type: map_at_5 value: 40.27733333333334 - type: mrr_at_1 value: 37.23483333333334 - type: mrr_at_10 value: 45.782000000000004 - type: mrr_at_100 value: 46.577083333333334 - type: mrr_at_1000 value: 46.62516666666667 - type: mrr_at_3 value: 43.480666666666664 - type: mrr_at_5 value: 44.79833333333333 - type: ndcg_at_1 value: 37.23483333333334 - type: ndcg_at_10 value: 46.971500000000006 - type: ndcg_at_100 value: 51.90125 - type: ndcg_at_1000 value: 53.86366666666667 - type: ndcg_at_3 value: 42.31791666666667 - type: ndcg_at_5 value: 44.458666666666666 - type: precision_at_1 value: 37.23483333333334 - type: precision_at_10 value: 8.044583333333332 - type: precision_at_100 value: 1.2334166666666666 - type: precision_at_1000 value: 0.15925 - type: precision_at_3 value: 19.240833333333327 - type: precision_at_5 value: 13.435083333333333 - type: recall_at_1 value: 31.656583333333334 - type: recall_at_10 value: 58.44758333333333 - type: recall_at_100 value: 79.93658333333332 - type: recall_at_1000 value: 93.32491666666668 - type: recall_at_3 value: 45.44266666666667 - type: recall_at_5 value: 50.99866666666666 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 28.247 - type: map_at_10 value: 35.443999999999996 - type: map_at_100 value: 36.578 - type: map_at_1000 value: 36.675999999999995 - type: map_at_3 value: 33.276 - type: map_at_5 value: 34.536 - type: mrr_at_1 value: 31.747999999999998 - type: mrr_at_10 value: 38.413000000000004 - type: mrr_at_100 value: 39.327 - type: mrr_at_1000 value: 39.389 - type: mrr_at_3 value: 36.401 - type: mrr_at_5 value: 37.543 - type: ndcg_at_1 value: 31.747999999999998 - type: ndcg_at_10 value: 39.646 - type: ndcg_at_100 value: 44.861000000000004 - type: ndcg_at_1000 value: 47.197 - type: ndcg_at_3 value: 35.764 - type: ndcg_at_5 value: 37.635999999999996 - type: precision_at_1 value: 31.747999999999998 - type: precision_at_10 value: 6.12 - type: precision_at_100 value: 0.942 - type: precision_at_1000 value: 0.123 - type: precision_at_3 value: 15.235000000000001 - type: precision_at_5 value: 10.491 - type: recall_at_1 value: 28.247 - type: recall_at_10 value: 49.456 - type: recall_at_100 value: 73.02499999999999 - type: recall_at_1000 value: 89.898 - type: recall_at_3 value: 38.653999999999996 - type: recall_at_5 value: 43.259 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 22.45 - type: map_at_10 value: 30.476999999999997 - type: map_at_100 value: 31.630999999999997 - type: map_at_1000 value: 31.755 - type: map_at_3 value: 27.989000000000004 - type: map_at_5 value: 29.410999999999998 - type: mrr_at_1 value: 26.979 - type: mrr_at_10 value: 34.316 - type: mrr_at_100 value: 35.272999999999996 - type: mrr_at_1000 value: 35.342 - type: mrr_at_3 value: 32.14 - type: mrr_at_5 value: 33.405 - type: ndcg_at_1 value: 26.979 - type: ndcg_at_10 value: 35.166 - type: ndcg_at_100 value: 40.583000000000006 - type: ndcg_at_1000 value: 43.282 - type: ndcg_at_3 value: 30.916 - type: ndcg_at_5 value: 32.973 - type: precision_at_1 value: 26.979 - type: precision_at_10 value: 6.132 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.145 - type: precision_at_3 value: 14.360999999999999 - type: precision_at_5 value: 10.227 - type: recall_at_1 value: 22.45 - type: recall_at_10 value: 45.348 - type: recall_at_100 value: 69.484 - type: recall_at_1000 value: 88.628 - type: recall_at_3 value: 33.338 - type: recall_at_5 value: 38.746 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 32.123000000000005 - type: map_at_10 value: 41.778 - type: map_at_100 value: 42.911 - type: map_at_1000 value: 42.994 - type: map_at_3 value: 38.558 - type: map_at_5 value: 40.318 - type: mrr_at_1 value: 37.687 - type: mrr_at_10 value: 45.889 - type: mrr_at_100 value: 46.672999999999995 - type: mrr_at_1000 value: 46.72 - type: mrr_at_3 value: 43.33 - type: mrr_at_5 value: 44.734 - type: ndcg_at_1 value: 37.687 - type: ndcg_at_10 value: 47.258 - type: ndcg_at_100 value: 52.331 - type: ndcg_at_1000 value: 54.152 - type: ndcg_at_3 value: 41.857 - type: ndcg_at_5 value: 44.283 - type: precision_at_1 value: 37.687 - type: precision_at_10 value: 7.892 - type: precision_at_100 value: 1.183 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_3 value: 18.781 - type: precision_at_5 value: 13.134 - type: recall_at_1 value: 32.123000000000005 - type: recall_at_10 value: 59.760000000000005 - type: recall_at_100 value: 81.652 - type: recall_at_1000 value: 94.401 - type: recall_at_3 value: 44.996 - type: recall_at_5 value: 51.184 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 33.196999999999996 - type: map_at_10 value: 42.012 - type: map_at_100 value: 43.663999999999994 - type: map_at_1000 value: 43.883 - type: map_at_3 value: 39.33 - type: map_at_5 value: 40.586 - type: mrr_at_1 value: 39.328 - type: mrr_at_10 value: 46.57 - type: mrr_at_100 value: 47.508 - type: mrr_at_1000 value: 47.558 - type: mrr_at_3 value: 44.532 - type: mrr_at_5 value: 45.58 - type: ndcg_at_1 value: 39.328 - type: ndcg_at_10 value: 47.337 - type: ndcg_at_100 value: 52.989 - type: ndcg_at_1000 value: 55.224 - type: ndcg_at_3 value: 43.362 - type: ndcg_at_5 value: 44.866 - type: precision_at_1 value: 39.328 - type: precision_at_10 value: 8.577 - type: precision_at_100 value: 1.5789999999999997 - type: precision_at_1000 value: 0.25 - type: precision_at_3 value: 19.697 - type: precision_at_5 value: 13.755 - type: recall_at_1 value: 33.196999999999996 - type: recall_at_10 value: 56.635000000000005 - type: recall_at_100 value: 81.882 - type: recall_at_1000 value: 95.342 - type: recall_at_3 value: 44.969 - type: recall_at_5 value: 49.266 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 26.901000000000003 - type: map_at_10 value: 35.77 - type: map_at_100 value: 36.638999999999996 - type: map_at_1000 value: 36.741 - type: map_at_3 value: 33.219 - type: map_at_5 value: 34.574 - type: mrr_at_1 value: 29.205 - type: mrr_at_10 value: 37.848 - type: mrr_at_100 value: 38.613 - type: mrr_at_1000 value: 38.682 - type: mrr_at_3 value: 35.551 - type: mrr_at_5 value: 36.808 - type: ndcg_at_1 value: 29.205 - type: ndcg_at_10 value: 40.589 - type: ndcg_at_100 value: 45.171 - type: ndcg_at_1000 value: 47.602 - type: ndcg_at_3 value: 35.760999999999996 - type: ndcg_at_5 value: 37.980000000000004 - type: precision_at_1 value: 29.205 - type: precision_at_10 value: 6.192 - type: precision_at_100 value: 0.922 - type: precision_at_1000 value: 0.123 - type: precision_at_3 value: 15.034 - type: precision_at_5 value: 10.424999999999999 - type: recall_at_1 value: 26.901000000000003 - type: recall_at_10 value: 53.236000000000004 - type: recall_at_100 value: 74.809 - type: recall_at_1000 value: 92.884 - type: recall_at_3 value: 40.314 - type: recall_at_5 value: 45.617999999999995 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 16.794999999999998 - type: map_at_10 value: 29.322 - type: map_at_100 value: 31.463 - type: map_at_1000 value: 31.643 - type: map_at_3 value: 24.517 - type: map_at_5 value: 27.237000000000002 - type: mrr_at_1 value: 37.655 - type: mrr_at_10 value: 50.952 - type: mrr_at_100 value: 51.581999999999994 - type: mrr_at_1000 value: 51.61 - type: mrr_at_3 value: 47.991 - type: mrr_at_5 value: 49.744 - type: ndcg_at_1 value: 37.655 - type: ndcg_at_10 value: 39.328 - type: ndcg_at_100 value: 46.358 - type: ndcg_at_1000 value: 49.245 - type: ndcg_at_3 value: 33.052 - type: ndcg_at_5 value: 35.407 - type: precision_at_1 value: 37.655 - type: precision_at_10 value: 12.202 - type: precision_at_100 value: 1.9789999999999999 - type: precision_at_1000 value: 0.252 - type: precision_at_3 value: 24.973 - type: precision_at_5 value: 19.075 - type: recall_at_1 value: 16.794999999999998 - type: recall_at_10 value: 45.716 - type: recall_at_100 value: 68.919 - type: recall_at_1000 value: 84.71600000000001 - type: recall_at_3 value: 30.135 - type: recall_at_5 value: 37.141999999999996 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.817 - type: map_at_10 value: 22.058 - type: map_at_100 value: 31.805 - type: map_at_1000 value: 33.562999999999995 - type: map_at_3 value: 15.537 - type: map_at_5 value: 18.199 - type: mrr_at_1 value: 72.75 - type: mrr_at_10 value: 79.804 - type: mrr_at_100 value: 80.089 - type: mrr_at_1000 value: 80.09100000000001 - type: mrr_at_3 value: 78.75 - type: mrr_at_5 value: 79.325 - type: ndcg_at_1 value: 59.875 - type: ndcg_at_10 value: 45.972 - type: ndcg_at_100 value: 51.092999999999996 - type: ndcg_at_1000 value: 58.048 - type: ndcg_at_3 value: 50.552 - type: ndcg_at_5 value: 47.672 - type: precision_at_1 value: 72.75 - type: precision_at_10 value: 37.05 - type: precision_at_100 value: 12.005 - type: precision_at_1000 value: 2.221 - type: precision_at_3 value: 54.083000000000006 - type: precision_at_5 value: 46.2 - type: recall_at_1 value: 9.817 - type: recall_at_10 value: 27.877000000000002 - type: recall_at_100 value: 57.974000000000004 - type: recall_at_1000 value: 80.085 - type: recall_at_3 value: 16.911 - type: recall_at_5 value: 20.689 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.464999999999996 - type: f1 value: 42.759588662873796 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 75.82900000000001 - type: map_at_10 value: 84.613 - type: map_at_100 value: 84.845 - type: map_at_1000 value: 84.855 - type: map_at_3 value: 83.498 - type: map_at_5 value: 84.29299999999999 - type: mrr_at_1 value: 81.69800000000001 - type: mrr_at_10 value: 88.84100000000001 - type: mrr_at_100 value: 88.887 - type: mrr_at_1000 value: 88.888 - type: mrr_at_3 value: 88.179 - type: mrr_at_5 value: 88.69200000000001 - type: ndcg_at_1 value: 81.69800000000001 - type: ndcg_at_10 value: 88.21799999999999 - type: ndcg_at_100 value: 88.961 - type: ndcg_at_1000 value: 89.131 - type: ndcg_at_3 value: 86.591 - type: ndcg_at_5 value: 87.666 - type: precision_at_1 value: 81.69800000000001 - type: precision_at_10 value: 10.615 - type: precision_at_100 value: 1.125 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 33.208 - type: precision_at_5 value: 20.681 - type: recall_at_1 value: 75.82900000000001 - type: recall_at_10 value: 94.97 - type: recall_at_100 value: 97.786 - type: recall_at_1000 value: 98.809 - type: recall_at_3 value: 90.625 - type: recall_at_5 value: 93.345 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 22.788 - type: map_at_10 value: 36.71 - type: map_at_100 value: 38.527 - type: map_at_1000 value: 38.701 - type: map_at_3 value: 32.318999999999996 - type: map_at_5 value: 34.809 - type: mrr_at_1 value: 44.444 - type: mrr_at_10 value: 52.868 - type: mrr_at_100 value: 53.52400000000001 - type: mrr_at_1000 value: 53.559999999999995 - type: mrr_at_3 value: 50.153999999999996 - type: mrr_at_5 value: 51.651 - type: ndcg_at_1 value: 44.444 - type: ndcg_at_10 value: 44.707 - type: ndcg_at_100 value: 51.174 - type: ndcg_at_1000 value: 53.996 - type: ndcg_at_3 value: 40.855999999999995 - type: ndcg_at_5 value: 42.113 - type: precision_at_1 value: 44.444 - type: precision_at_10 value: 12.021999999999998 - type: precision_at_100 value: 1.8950000000000002 - type: precision_at_1000 value: 0.241 - type: precision_at_3 value: 26.8 - type: precision_at_5 value: 19.66 - type: recall_at_1 value: 22.788 - type: recall_at_10 value: 51.793 - type: recall_at_100 value: 75.69500000000001 - type: recall_at_1000 value: 92.292 - type: recall_at_3 value: 37.375 - type: recall_at_5 value: 43.682 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 41.276 - type: map_at_10 value: 67.245 - type: map_at_100 value: 68.061 - type: map_at_1000 value: 68.11399999999999 - type: map_at_3 value: 63.693 - type: map_at_5 value: 65.90899999999999 - type: mrr_at_1 value: 82.552 - type: mrr_at_10 value: 87.741 - type: mrr_at_100 value: 87.868 - type: mrr_at_1000 value: 87.871 - type: mrr_at_3 value: 86.98599999999999 - type: mrr_at_5 value: 87.469 - type: ndcg_at_1 value: 82.552 - type: ndcg_at_10 value: 75.176 - type: ndcg_at_100 value: 77.902 - type: ndcg_at_1000 value: 78.852 - type: ndcg_at_3 value: 70.30499999999999 - type: ndcg_at_5 value: 73.00999999999999 - type: precision_at_1 value: 82.552 - type: precision_at_10 value: 15.765 - type: precision_at_100 value: 1.788 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 45.375 - type: precision_at_5 value: 29.360999999999997 - type: recall_at_1 value: 41.276 - type: recall_at_10 value: 78.825 - type: recall_at_100 value: 89.41900000000001 - type: recall_at_1000 value: 95.625 - type: recall_at_3 value: 68.062 - type: recall_at_5 value: 73.40299999999999 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 72.876 - type: ap value: 67.15477852410164 - type: f1 value: 72.65147370025373 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 21.748 - type: map_at_10 value: 34.626000000000005 - type: map_at_100 value: 35.813 - type: map_at_1000 value: 35.859 - type: map_at_3 value: 30.753000000000004 - type: map_at_5 value: 33.049 - type: mrr_at_1 value: 22.35 - type: mrr_at_10 value: 35.23 - type: mrr_at_100 value: 36.359 - type: mrr_at_1000 value: 36.399 - type: mrr_at_3 value: 31.436999999999998 - type: mrr_at_5 value: 33.687 - type: ndcg_at_1 value: 22.364 - type: ndcg_at_10 value: 41.677 - type: ndcg_at_100 value: 47.355999999999995 - type: ndcg_at_1000 value: 48.494 - type: ndcg_at_3 value: 33.85 - type: ndcg_at_5 value: 37.942 - type: precision_at_1 value: 22.364 - type: precision_at_10 value: 6.6000000000000005 - type: precision_at_100 value: 0.9450000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.527000000000001 - type: precision_at_5 value: 10.796999999999999 - type: recall_at_1 value: 21.748 - type: recall_at_10 value: 63.292 - type: recall_at_100 value: 89.427 - type: recall_at_1000 value: 98.13499999999999 - type: recall_at_3 value: 42.126000000000005 - type: recall_at_5 value: 51.968 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.62425900592795 - type: f1 value: 92.08497761553683 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 64.51436388508893 - type: f1 value: 45.884016531912906 - task: type: Classification dataset: name: MTEB MasakhaNEWSClassification (eng) type: masakhane/masakhanews config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: accuracy value: 76.57172995780591 - type: f1 value: 75.52979910878491 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (eng) type: masakhane/masakhanews config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: v_measure value: 44.84052695201612 - type: v_measure value: 21.443971229936494 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.79354404841965 - type: f1 value: 63.17260074126185 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.09616677874916 - type: f1 value: 69.74285784421075 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.474709231086184 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.93630367824217 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 29.08234393834005 - type: mrr value: 29.740466971605432 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 6.2059999999999995 - type: map_at_10 value: 14.442 - type: map_at_100 value: 18.005 - type: map_at_1000 value: 19.488 - type: map_at_3 value: 10.666 - type: map_at_5 value: 12.45 - type: mrr_at_1 value: 47.678 - type: mrr_at_10 value: 57.519 - type: mrr_at_100 value: 58.13700000000001 - type: mrr_at_1000 value: 58.167 - type: mrr_at_3 value: 55.779 - type: mrr_at_5 value: 56.940000000000005 - type: ndcg_at_1 value: 45.82 - type: ndcg_at_10 value: 37.651 - type: ndcg_at_100 value: 34.001999999999995 - type: ndcg_at_1000 value: 42.626 - type: ndcg_at_3 value: 43.961 - type: ndcg_at_5 value: 41.461 - type: precision_at_1 value: 47.678 - type: precision_at_10 value: 27.584999999999997 - type: precision_at_100 value: 8.455 - type: precision_at_1000 value: 2.118 - type: precision_at_3 value: 41.692 - type: precision_at_5 value: 36.161 - type: recall_at_1 value: 6.2059999999999995 - type: recall_at_10 value: 18.599 - type: recall_at_100 value: 33.608 - type: recall_at_1000 value: 65.429 - type: recall_at_3 value: 12.126000000000001 - type: recall_at_5 value: 14.902000000000001 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 39.117000000000004 - type: map_at_10 value: 55.535000000000004 - type: map_at_100 value: 56.32899999999999 - type: map_at_1000 value: 56.34400000000001 - type: map_at_3 value: 51.439 - type: map_at_5 value: 53.89699999999999 - type: mrr_at_1 value: 43.714 - type: mrr_at_10 value: 58.05200000000001 - type: mrr_at_100 value: 58.582 - type: mrr_at_1000 value: 58.592 - type: mrr_at_3 value: 54.896 - type: mrr_at_5 value: 56.874 - type: ndcg_at_1 value: 43.685 - type: ndcg_at_10 value: 63.108 - type: ndcg_at_100 value: 66.231 - type: ndcg_at_1000 value: 66.583 - type: ndcg_at_3 value: 55.659000000000006 - type: ndcg_at_5 value: 59.681 - type: precision_at_1 value: 43.685 - type: precision_at_10 value: 9.962 - type: precision_at_100 value: 1.174 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 24.961 - type: precision_at_5 value: 17.352 - type: recall_at_1 value: 39.117000000000004 - type: recall_at_10 value: 83.408 - type: recall_at_100 value: 96.553 - type: recall_at_1000 value: 99.136 - type: recall_at_3 value: 64.364 - type: recall_at_5 value: 73.573 - task: type: Classification dataset: name: MTEB NewsClassification type: ag_news config: default split: test revision: eb185aade064a813bc0b7f42de02595523103ca4 metrics: - type: accuracy value: 78.87763157894737 - type: f1 value: 78.69611753876177 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (en) type: GEM/opusparcus config: en split: test revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cos_sim_accuracy value: 99.89816700610999 - type: cos_sim_ap value: 100 - type: cos_sim_f1 value: 99.9490575649516 - type: cos_sim_precision value: 100 - type: cos_sim_recall value: 99.89816700610999 - type: dot_accuracy value: 99.89816700610999 - type: dot_ap value: 100 - type: dot_f1 value: 99.9490575649516 - type: dot_precision value: 100 - type: dot_recall value: 99.89816700610999 - type: euclidean_accuracy value: 99.89816700610999 - type: euclidean_ap value: 100 - type: euclidean_f1 value: 99.9490575649516 - type: euclidean_precision value: 100 - type: euclidean_recall value: 99.89816700610999 - type: manhattan_accuracy value: 99.89816700610999 - type: manhattan_ap value: 100 - type: manhattan_f1 value: 99.9490575649516 - type: manhattan_precision value: 100 - type: manhattan_recall value: 99.89816700610999 - type: max_accuracy value: 99.89816700610999 - type: max_ap value: 100 - type: max_f1 value: 99.9490575649516 - task: type: PairClassification dataset: name: MTEB PawsX (en) type: paws-x config: en split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 62 - type: cos_sim_ap value: 62.26837791655737 - type: cos_sim_f1 value: 62.607449856733524 - type: cos_sim_precision value: 46.36604774535809 - type: cos_sim_recall value: 96.36163175303197 - type: dot_accuracy value: 62 - type: dot_ap value: 62.26736459439965 - type: dot_f1 value: 62.607449856733524 - type: dot_precision value: 46.36604774535809 - type: dot_recall value: 96.36163175303197 - type: euclidean_accuracy value: 62 - type: euclidean_ap value: 62.26826112548132 - type: euclidean_f1 value: 62.607449856733524 - type: euclidean_precision value: 46.36604774535809 - type: euclidean_recall value: 96.36163175303197 - type: manhattan_accuracy value: 62 - type: manhattan_ap value: 62.26223761507973 - type: manhattan_f1 value: 62.585034013605444 - type: manhattan_precision value: 46.34146341463415 - type: manhattan_recall value: 96.36163175303197 - type: max_accuracy value: 62 - type: max_ap value: 62.26837791655737 - type: max_f1 value: 62.607449856733524 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 69.90899999999999 - type: map_at_10 value: 83.56700000000001 - type: map_at_100 value: 84.19200000000001 - type: map_at_1000 value: 84.212 - type: map_at_3 value: 80.658 - type: map_at_5 value: 82.473 - type: mrr_at_1 value: 80.4 - type: mrr_at_10 value: 86.699 - type: mrr_at_100 value: 86.798 - type: mrr_at_1000 value: 86.80099999999999 - type: mrr_at_3 value: 85.677 - type: mrr_at_5 value: 86.354 - type: ndcg_at_1 value: 80.43 - type: ndcg_at_10 value: 87.41 - type: ndcg_at_100 value: 88.653 - type: ndcg_at_1000 value: 88.81599999999999 - type: ndcg_at_3 value: 84.516 - type: ndcg_at_5 value: 86.068 - type: precision_at_1 value: 80.43 - type: precision_at_10 value: 13.234000000000002 - type: precision_at_100 value: 1.513 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.93 - type: precision_at_5 value: 24.26 - type: recall_at_1 value: 69.90899999999999 - type: recall_at_10 value: 94.687 - type: recall_at_100 value: 98.96000000000001 - type: recall_at_1000 value: 99.79599999999999 - type: recall_at_3 value: 86.25699999999999 - type: recall_at_5 value: 90.70700000000001 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 46.02256865360266 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 62.43157528757563 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 5.093 - type: map_at_10 value: 12.982 - type: map_at_100 value: 15.031 - type: map_at_1000 value: 15.334 - type: map_at_3 value: 9.339 - type: map_at_5 value: 11.183 - type: mrr_at_1 value: 25.1 - type: mrr_at_10 value: 36.257 - type: mrr_at_100 value: 37.351 - type: mrr_at_1000 value: 37.409 - type: mrr_at_3 value: 33.050000000000004 - type: mrr_at_5 value: 35.205 - type: ndcg_at_1 value: 25.1 - type: ndcg_at_10 value: 21.361 - type: ndcg_at_100 value: 29.396 - type: ndcg_at_1000 value: 34.849999999999994 - type: ndcg_at_3 value: 20.704 - type: ndcg_at_5 value: 18.086 - type: precision_at_1 value: 25.1 - type: precision_at_10 value: 10.94 - type: precision_at_100 value: 2.257 - type: precision_at_1000 value: 0.358 - type: precision_at_3 value: 19.467000000000002 - type: precision_at_5 value: 15.98 - type: recall_at_1 value: 5.093 - type: recall_at_10 value: 22.177 - type: recall_at_100 value: 45.842 - type: recall_at_1000 value: 72.598 - type: recall_at_3 value: 11.833 - type: recall_at_5 value: 16.173000000000002 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 73.56535226754596 - type: cos_sim_spearman value: 69.32425977603488 - type: euclidean_pearson value: 71.32425703470898 - type: euclidean_spearman value: 69.32425217267013 - type: manhattan_pearson value: 71.25897281394246 - type: manhattan_spearman value: 69.27132577049578 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 69.66387868726018 - type: cos_sim_spearman value: 67.85470749045027 - type: euclidean_pearson value: 66.62075098063795 - type: euclidean_spearman value: 67.85470749045027 - type: manhattan_pearson value: 66.61455061901262 - type: manhattan_spearman value: 67.87229618498695 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 75.65731331392575 - type: cos_sim_spearman value: 77.48991626780108 - type: euclidean_pearson value: 77.19884738623692 - type: euclidean_spearman value: 77.48985836619045 - type: manhattan_pearson value: 77.0656684243772 - type: manhattan_spearman value: 77.30289226582691 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 69.37003253666457 - type: cos_sim_spearman value: 69.77157648098141 - type: euclidean_pearson value: 69.39543876030432 - type: euclidean_spearman value: 69.77157648098141 - type: manhattan_pearson value: 69.29901600459745 - type: manhattan_spearman value: 69.65074167527128 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 78.56777256540136 - type: cos_sim_spearman value: 80.16458787843023 - type: euclidean_pearson value: 80.16475730686916 - type: euclidean_spearman value: 80.16458787843023 - type: manhattan_pearson value: 80.12814463670401 - type: manhattan_spearman value: 80.1357907984809 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 76.09572350919031 - type: cos_sim_spearman value: 77.94490233429326 - type: euclidean_pearson value: 78.36595251203524 - type: euclidean_spearman value: 77.94490233429326 - type: manhattan_pearson value: 78.41538768125166 - type: manhattan_spearman value: 78.01244379569542 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.7843552187951 - type: cos_sim_spearman value: 82.28085055047386 - type: euclidean_pearson value: 82.37373672515267 - type: euclidean_spearman value: 82.28085055047386 - type: manhattan_pearson value: 82.39387241346917 - type: manhattan_spearman value: 82.36503339515906 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 68.29963929962095 - type: cos_sim_spearman value: 67.96868942546051 - type: euclidean_pearson value: 68.93524903869285 - type: euclidean_spearman value: 67.96868942546051 - type: manhattan_pearson value: 68.79144468444811 - type: manhattan_spearman value: 67.69311483884324 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 72.84789696700685 - type: cos_sim_spearman value: 75.67875747588545 - type: euclidean_pearson value: 75.07752300463038 - type: euclidean_spearman value: 75.67875747588545 - type: manhattan_pearson value: 74.97934248140928 - type: manhattan_spearman value: 75.62525644178724 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (en) type: PhilipMay/stsb_multi_mt config: en split: test revision: 93d57ef91790589e3ce9c365164337a8a78b7632 metrics: - type: cos_sim_pearson value: 72.84789702519309 - type: cos_sim_spearman value: 75.67875747588545 - type: euclidean_pearson value: 75.07752310061133 - type: euclidean_spearman value: 75.67875747588545 - type: manhattan_pearson value: 74.97934257159595 - type: manhattan_spearman value: 75.62525644178724 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 81.55557720431086 - type: mrr value: 94.91178665198272 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 59.260999999999996 - type: map_at_10 value: 69.36099999999999 - type: map_at_100 value: 69.868 - type: map_at_1000 value: 69.877 - type: map_at_3 value: 66.617 - type: map_at_5 value: 68.061 - type: mrr_at_1 value: 62.333000000000006 - type: mrr_at_10 value: 70.533 - type: mrr_at_100 value: 70.966 - type: mrr_at_1000 value: 70.975 - type: mrr_at_3 value: 68.667 - type: mrr_at_5 value: 69.717 - type: ndcg_at_1 value: 62.333000000000006 - type: ndcg_at_10 value: 73.82300000000001 - type: ndcg_at_100 value: 76.122 - type: ndcg_at_1000 value: 76.374 - type: ndcg_at_3 value: 69.27499999999999 - type: ndcg_at_5 value: 71.33 - type: precision_at_1 value: 62.333000000000006 - type: precision_at_10 value: 9.8 - type: precision_at_100 value: 1.097 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.889000000000003 - type: precision_at_5 value: 17.599999999999998 - type: recall_at_1 value: 59.260999999999996 - type: recall_at_10 value: 86.2 - type: recall_at_100 value: 96.667 - type: recall_at_1000 value: 98.667 - type: recall_at_3 value: 74.006 - type: recall_at_5 value: 79.167 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81881188118813 - type: cos_sim_ap value: 95.20169041096409 - type: cos_sim_f1 value: 90.76224129227664 - type: cos_sim_precision value: 91.64118246687055 - type: cos_sim_recall value: 89.9 - type: dot_accuracy value: 99.81881188118813 - type: dot_ap value: 95.20169041096409 - type: dot_f1 value: 90.76224129227664 - type: dot_precision value: 91.64118246687055 - type: dot_recall value: 89.9 - type: euclidean_accuracy value: 99.81881188118813 - type: euclidean_ap value: 95.2016904109641 - type: euclidean_f1 value: 90.76224129227664 - type: euclidean_precision value: 91.64118246687055 - type: euclidean_recall value: 89.9 - type: manhattan_accuracy value: 99.81881188118813 - type: manhattan_ap value: 95.22680188132777 - type: manhattan_f1 value: 90.79013588324108 - type: manhattan_precision value: 91.38804457953394 - type: manhattan_recall value: 90.2 - type: max_accuracy value: 99.81881188118813 - type: max_ap value: 95.22680188132777 - type: max_f1 value: 90.79013588324108 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 57.8638628701308 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 37.82028248106046 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.870860210170946 - type: mrr value: 51.608084521687466 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.60384207444685 - type: cos_sim_spearman value: 30.84047452209471 - type: dot_pearson value: 31.60384104417333 - type: dot_spearman value: 30.84047452209471 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.246 - type: map_at_10 value: 2.051 - type: map_at_100 value: 13.129 - type: map_at_1000 value: 31.56 - type: map_at_3 value: 0.681 - type: map_at_5 value: 1.105 - type: mrr_at_1 value: 94 - type: mrr_at_10 value: 97 - type: mrr_at_100 value: 97 - type: mrr_at_1000 value: 97 - type: mrr_at_3 value: 97 - type: mrr_at_5 value: 97 - type: ndcg_at_1 value: 87 - type: ndcg_at_10 value: 80.716 - type: ndcg_at_100 value: 63.83 - type: ndcg_at_1000 value: 56.215 - type: ndcg_at_3 value: 84.531 - type: ndcg_at_5 value: 84.777 - type: precision_at_1 value: 94 - type: precision_at_10 value: 84.6 - type: precision_at_100 value: 66.03999999999999 - type: precision_at_1000 value: 24.878 - type: precision_at_3 value: 88.667 - type: precision_at_5 value: 89.60000000000001 - type: recall_at_1 value: 0.246 - type: recall_at_10 value: 2.2079999999999997 - type: recall_at_100 value: 15.895999999999999 - type: recall_at_1000 value: 52.683 - type: recall_at_3 value: 0.7040000000000001 - type: recall_at_5 value: 1.163 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.852 - type: map_at_10 value: 14.316 - type: map_at_100 value: 20.982 - type: map_at_1000 value: 22.58 - type: map_at_3 value: 7.767 - type: map_at_5 value: 10.321 - type: mrr_at_1 value: 51.019999999999996 - type: mrr_at_10 value: 66.365 - type: mrr_at_100 value: 66.522 - type: mrr_at_1000 value: 66.522 - type: mrr_at_3 value: 62.925 - type: mrr_at_5 value: 64.762 - type: ndcg_at_1 value: 46.939 - type: ndcg_at_10 value: 34.516999999999996 - type: ndcg_at_100 value: 44.25 - type: ndcg_at_1000 value: 54.899 - type: ndcg_at_3 value: 40.203 - type: ndcg_at_5 value: 37.004 - type: precision_at_1 value: 51.019999999999996 - type: precision_at_10 value: 29.796 - type: precision_at_100 value: 8.633000000000001 - type: precision_at_1000 value: 1.584 - type: precision_at_3 value: 40.816 - type: precision_at_5 value: 35.918 - type: recall_at_1 value: 3.852 - type: recall_at_10 value: 20.891000000000002 - type: recall_at_100 value: 52.428 - type: recall_at_1000 value: 84.34899999999999 - type: recall_at_3 value: 8.834 - type: recall_at_5 value: 12.909 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 64.7092 - type: ap value: 11.972915012305819 - type: f1 value: 49.91050149892115 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 56.737408036219584 - type: f1 value: 57.07235266246011 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 35.9147539025798 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 82.52369315133814 - type: cos_sim_ap value: 62.34858091376534 - type: cos_sim_f1 value: 58.18225190839694 - type: cos_sim_precision value: 53.09098824553766 - type: cos_sim_recall value: 64.35356200527704 - type: dot_accuracy value: 82.52369315133814 - type: dot_ap value: 62.34857753814992 - type: dot_f1 value: 58.18225190839694 - type: dot_precision value: 53.09098824553766 - type: dot_recall value: 64.35356200527704 - type: euclidean_accuracy value: 82.52369315133814 - type: euclidean_ap value: 62.34857756663386 - type: euclidean_f1 value: 58.18225190839694 - type: euclidean_precision value: 53.09098824553766 - type: euclidean_recall value: 64.35356200527704 - type: manhattan_accuracy value: 82.49389044525243 - type: manhattan_ap value: 62.32245347238179 - type: manhattan_f1 value: 58.206309819213054 - type: manhattan_precision value: 52.70704044511021 - type: manhattan_recall value: 64.9868073878628 - type: max_accuracy value: 82.52369315133814 - type: max_ap value: 62.34858091376534 - type: max_f1 value: 58.206309819213054 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.34555827220863 - type: cos_sim_ap value: 84.84152481680071 - type: cos_sim_f1 value: 76.860456739428 - type: cos_sim_precision value: 72.21470150263978 - type: cos_sim_recall value: 82.14505697566985 - type: dot_accuracy value: 88.34555827220863 - type: dot_ap value: 84.84152743322608 - type: dot_f1 value: 76.860456739428 - type: dot_precision value: 72.21470150263978 - type: dot_recall value: 82.14505697566985 - type: euclidean_accuracy value: 88.34555827220863 - type: euclidean_ap value: 84.84152589453169 - type: euclidean_f1 value: 76.860456739428 - type: euclidean_precision value: 72.21470150263978 - type: euclidean_recall value: 82.14505697566985 - type: manhattan_accuracy value: 88.38242713548337 - type: manhattan_ap value: 84.8112124970968 - type: manhattan_f1 value: 76.83599206057487 - type: manhattan_precision value: 73.51244900829934 - type: manhattan_recall value: 80.47428395441946 - type: max_accuracy value: 88.38242713548337 - type: max_ap value: 84.84152743322608 - type: max_f1 value: 76.860456739428 - task: type: Clustering dataset: name: MTEB WikiCitiesClustering type: jinaai/cities_wiki_clustering config: default split: test revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa metrics: - type: v_measure value: 85.5314389263015 --- # bcastle/snowflake-arctic-embed-l-Q8_0-GGUF This model was converted to GGUF format from [`Snowflake/snowflake-arctic-embed-l`](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo bcastle/snowflake-arctic-embed-l-Q8_0-GGUF --hf-file snowflake-arctic-embed-l-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo bcastle/snowflake-arctic-embed-l-Q8_0-GGUF --hf-file snowflake-arctic-embed-l-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo bcastle/snowflake-arctic-embed-l-Q8_0-GGUF --hf-file snowflake-arctic-embed-l-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo bcastle/snowflake-arctic-embed-l-Q8_0-GGUF --hf-file snowflake-arctic-embed-l-q8_0.gguf -c 2048 ```