ayousanz commited on
Commit
2d08e82
·
verified ·
1 Parent(s): 24020e0

Upload folder using huggingface_hub

Browse files
calm_peft2/.ipynb_checkpoints/all_results-checkpoint.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.3,
3
+ "train_loss": 1.5218488388061524,
4
+ "train_runtime": 2791.1418,
5
+ "train_samples_per_second": 2.866,
6
+ "train_steps_per_second": 0.358
7
+ }
calm_peft2/.ipynb_checkpoints/metrics-checkpoint.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"run_name": "./output/calm_peft2", "train_runtime": 2791.1418, "train_samples_per_second": 2.866, "train_steps_per_second": 0.358, "train_loss": 1.5218488388061524, "epoch": 0.3}
calm_peft2/.ipynb_checkpoints/train_results-checkpoint.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.3,
3
+ "train_loss": 1.5218488388061524,
4
+ "train_runtime": 2791.1418,
5
+ "train_samples_per_second": 2.866,
6
+ "train_steps_per_second": 0.358
7
+ }
calm_peft2/.ipynb_checkpoints/trainer_state-checkpoint.json ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.29542097488921715,
5
+ "eval_steps": 187.0,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0001,
14
+ "loss": 2.2816,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 2.0804,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0001,
26
+ "loss": 1.8065,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0001,
32
+ "loss": 1.631,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001,
38
+ "loss": 0.7561,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.0001,
44
+ "loss": 2.5495,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0001,
50
+ "loss": 2.0616,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0001,
56
+ "loss": 1.7109,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.0001,
62
+ "loss": 1.308,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0001,
68
+ "loss": 0.779,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0001,
74
+ "loss": 2.1683,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0001,
80
+ "loss": 1.6812,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.6208,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0001,
92
+ "loss": 1.449,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0001,
98
+ "loss": 0.8452,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0001,
104
+ "loss": 2.5406,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0001,
110
+ "loss": 2.0796,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 0.0001,
116
+ "loss": 1.9452,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0001,
122
+ "loss": 1.9092,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0001,
128
+ "loss": 0.8988,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "learning_rate": 0.0001,
134
+ "loss": 2.314,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.06,
139
+ "learning_rate": 0.0001,
140
+ "loss": 2.1741,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0001,
146
+ "loss": 1.7453,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0001,
152
+ "loss": 1.7001,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.07,
157
+ "learning_rate": 0.0001,
158
+ "loss": 0.6434,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.0001,
164
+ "loss": 2.2578,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0001,
170
+ "loss": 2.0492,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.08,
175
+ "learning_rate": 0.0001,
176
+ "loss": 2.0121,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0001,
182
+ "loss": 1.735,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0001,
188
+ "loss": 0.6643,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.09,
193
+ "learning_rate": 0.0001,
194
+ "loss": 2.2121,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.09,
199
+ "learning_rate": 0.0001,
200
+ "loss": 1.9411,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0001,
206
+ "loss": 1.9257,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.1,
211
+ "learning_rate": 0.0001,
212
+ "loss": 1.561,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.1,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.7478,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0001,
224
+ "loss": 2.1871,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.11,
229
+ "learning_rate": 0.0001,
230
+ "loss": 2.0336,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.11,
235
+ "learning_rate": 0.0001,
236
+ "loss": 1.848,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0001,
242
+ "loss": 1.61,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.0001,
248
+ "loss": 0.6019,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.12,
253
+ "learning_rate": 0.0001,
254
+ "loss": 2.2937,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.12,
259
+ "learning_rate": 0.0001,
260
+ "loss": 1.962,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0001,
266
+ "loss": 1.767,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.13,
271
+ "learning_rate": 0.0001,
272
+ "loss": 1.2395,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.13,
277
+ "learning_rate": 0.0001,
278
+ "loss": 0.7186,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0001,
284
+ "loss": 2.1057,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.14,
289
+ "learning_rate": 0.0001,
290
+ "loss": 1.7197,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.14,
295
+ "learning_rate": 0.0001,
296
+ "loss": 1.7007,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.14,
301
+ "learning_rate": 0.0001,
302
+ "loss": 1.5577,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.15,
307
+ "learning_rate": 0.0001,
308
+ "loss": 0.5468,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.15,
313
+ "learning_rate": 0.0001,
314
+ "loss": 1.9828,
315
+ "step": 510
316
+ },
317
+ {
318
+ "epoch": 0.15,
319
+ "learning_rate": 0.0001,
320
+ "loss": 1.8339,
321
+ "step": 520
322
+ },
323
+ {
324
+ "epoch": 0.16,
325
+ "learning_rate": 0.0001,
326
+ "loss": 1.8204,
327
+ "step": 530
328
+ },
329
+ {
330
+ "epoch": 0.16,
331
+ "learning_rate": 0.0001,
332
+ "loss": 1.1488,
333
+ "step": 540
334
+ },
335
+ {
336
+ "epoch": 0.16,
337
+ "learning_rate": 0.0001,
338
+ "loss": 0.7018,
339
+ "step": 550
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0001,
344
+ "loss": 2.0107,
345
+ "step": 560
346
+ },
347
+ {
348
+ "epoch": 0.17,
349
+ "learning_rate": 0.0001,
350
+ "loss": 1.7952,
351
+ "step": 570
352
+ },
353
+ {
354
+ "epoch": 0.17,
355
+ "learning_rate": 0.0001,
356
+ "loss": 1.6785,
357
+ "step": 580
358
+ },
359
+ {
360
+ "epoch": 0.17,
361
+ "learning_rate": 0.0001,
362
+ "loss": 1.3707,
363
+ "step": 590
364
+ },
365
+ {
366
+ "epoch": 0.18,
367
+ "learning_rate": 0.0001,
368
+ "loss": 0.843,
369
+ "step": 600
370
+ },
371
+ {
372
+ "epoch": 0.18,
373
+ "learning_rate": 0.0001,
374
+ "loss": 2.007,
375
+ "step": 610
376
+ },
377
+ {
378
+ "epoch": 0.18,
379
+ "learning_rate": 0.0001,
380
+ "loss": 1.7266,
381
+ "step": 620
382
+ },
383
+ {
384
+ "epoch": 0.19,
385
+ "learning_rate": 0.0001,
386
+ "loss": 1.5525,
387
+ "step": 630
388
+ },
389
+ {
390
+ "epoch": 0.19,
391
+ "learning_rate": 0.0001,
392
+ "loss": 1.4371,
393
+ "step": 640
394
+ },
395
+ {
396
+ "epoch": 0.19,
397
+ "learning_rate": 0.0001,
398
+ "loss": 0.6983,
399
+ "step": 650
400
+ },
401
+ {
402
+ "epoch": 0.19,
403
+ "learning_rate": 0.0001,
404
+ "loss": 2.015,
405
+ "step": 660
406
+ },
407
+ {
408
+ "epoch": 0.2,
409
+ "learning_rate": 0.0001,
410
+ "loss": 1.5371,
411
+ "step": 670
412
+ },
413
+ {
414
+ "epoch": 0.2,
415
+ "learning_rate": 0.0001,
416
+ "loss": 1.4935,
417
+ "step": 680
418
+ },
419
+ {
420
+ "epoch": 0.2,
421
+ "learning_rate": 0.0001,
422
+ "loss": 1.3311,
423
+ "step": 690
424
+ },
425
+ {
426
+ "epoch": 0.21,
427
+ "learning_rate": 0.0001,
428
+ "loss": 0.7051,
429
+ "step": 700
430
+ },
431
+ {
432
+ "epoch": 0.21,
433
+ "learning_rate": 0.0001,
434
+ "loss": 1.9327,
435
+ "step": 710
436
+ },
437
+ {
438
+ "epoch": 0.21,
439
+ "learning_rate": 0.0001,
440
+ "loss": 1.5606,
441
+ "step": 720
442
+ },
443
+ {
444
+ "epoch": 0.22,
445
+ "learning_rate": 0.0001,
446
+ "loss": 1.4968,
447
+ "step": 730
448
+ },
449
+ {
450
+ "epoch": 0.22,
451
+ "learning_rate": 0.0001,
452
+ "loss": 1.3262,
453
+ "step": 740
454
+ },
455
+ {
456
+ "epoch": 0.22,
457
+ "learning_rate": 0.0001,
458
+ "loss": 0.5939,
459
+ "step": 750
460
+ },
461
+ {
462
+ "epoch": 0.22,
463
+ "learning_rate": 0.0001,
464
+ "loss": 1.7271,
465
+ "step": 760
466
+ },
467
+ {
468
+ "epoch": 0.23,
469
+ "learning_rate": 0.0001,
470
+ "loss": 1.5867,
471
+ "step": 770
472
+ },
473
+ {
474
+ "epoch": 0.23,
475
+ "learning_rate": 0.0001,
476
+ "loss": 1.3506,
477
+ "step": 780
478
+ },
479
+ {
480
+ "epoch": 0.23,
481
+ "learning_rate": 0.0001,
482
+ "loss": 1.1795,
483
+ "step": 790
484
+ },
485
+ {
486
+ "epoch": 0.24,
487
+ "learning_rate": 0.0001,
488
+ "loss": 0.6267,
489
+ "step": 800
490
+ },
491
+ {
492
+ "epoch": 0.24,
493
+ "learning_rate": 0.0001,
494
+ "loss": 1.7025,
495
+ "step": 810
496
+ },
497
+ {
498
+ "epoch": 0.24,
499
+ "learning_rate": 0.0001,
500
+ "loss": 1.5475,
501
+ "step": 820
502
+ },
503
+ {
504
+ "epoch": 0.25,
505
+ "learning_rate": 0.0001,
506
+ "loss": 1.38,
507
+ "step": 830
508
+ },
509
+ {
510
+ "epoch": 0.25,
511
+ "learning_rate": 0.0001,
512
+ "loss": 1.2135,
513
+ "step": 840
514
+ },
515
+ {
516
+ "epoch": 0.25,
517
+ "learning_rate": 0.0001,
518
+ "loss": 0.7972,
519
+ "step": 850
520
+ },
521
+ {
522
+ "epoch": 0.25,
523
+ "learning_rate": 0.0001,
524
+ "loss": 1.7377,
525
+ "step": 860
526
+ },
527
+ {
528
+ "epoch": 0.26,
529
+ "learning_rate": 0.0001,
530
+ "loss": 1.4137,
531
+ "step": 870
532
+ },
533
+ {
534
+ "epoch": 0.26,
535
+ "learning_rate": 0.0001,
536
+ "loss": 1.3966,
537
+ "step": 880
538
+ },
539
+ {
540
+ "epoch": 0.26,
541
+ "learning_rate": 0.0001,
542
+ "loss": 1.1558,
543
+ "step": 890
544
+ },
545
+ {
546
+ "epoch": 0.27,
547
+ "learning_rate": 0.0001,
548
+ "loss": 0.7261,
549
+ "step": 900
550
+ },
551
+ {
552
+ "epoch": 0.27,
553
+ "learning_rate": 0.0001,
554
+ "loss": 1.7688,
555
+ "step": 910
556
+ },
557
+ {
558
+ "epoch": 0.27,
559
+ "learning_rate": 0.0001,
560
+ "loss": 1.375,
561
+ "step": 920
562
+ },
563
+ {
564
+ "epoch": 0.27,
565
+ "learning_rate": 0.0001,
566
+ "loss": 1.4755,
567
+ "step": 930
568
+ },
569
+ {
570
+ "epoch": 0.28,
571
+ "learning_rate": 0.0001,
572
+ "loss": 1.0716,
573
+ "step": 940
574
+ },
575
+ {
576
+ "epoch": 0.28,
577
+ "learning_rate": 0.0001,
578
+ "loss": 0.6151,
579
+ "step": 950
580
+ },
581
+ {
582
+ "epoch": 0.28,
583
+ "learning_rate": 0.0001,
584
+ "loss": 1.6191,
585
+ "step": 960
586
+ },
587
+ {
588
+ "epoch": 0.29,
589
+ "learning_rate": 0.0001,
590
+ "loss": 1.4029,
591
+ "step": 970
592
+ },
593
+ {
594
+ "epoch": 0.29,
595
+ "learning_rate": 0.0001,
596
+ "loss": 1.1584,
597
+ "step": 980
598
+ },
599
+ {
600
+ "epoch": 0.29,
601
+ "learning_rate": 0.0001,
602
+ "loss": 1.1818,
603
+ "step": 990
604
+ },
605
+ {
606
+ "epoch": 0.3,
607
+ "learning_rate": 0.0001,
608
+ "loss": 0.6989,
609
+ "step": 1000
610
+ },
611
+ {
612
+ "epoch": 0.3,
613
+ "step": 1000,
614
+ "total_flos": 2.059192230248448e+16,
615
+ "train_loss": 1.5218488388061524,
616
+ "train_runtime": 2791.1418,
617
+ "train_samples_per_second": 2.866,
618
+ "train_steps_per_second": 0.358
619
+ }
620
+ ],
621
+ "logging_steps": 10,
622
+ "max_steps": 1000,
623
+ "num_input_tokens_seen": 0,
624
+ "num_train_epochs": 1,
625
+ "save_steps": 50,
626
+ "total_flos": 2.059192230248448e+16,
627
+ "train_batch_size": 4,
628
+ "trial_name": null,
629
+ "trial_params": null
630
+ }
calm_peft_chat/checkpoint-1500/.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: cyberagent/calm2-7b-chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2