ayameRushia commited on
Commit
22cf89e
·
verified ·
1 Parent(s): 2430b7a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -5
README.md CHANGED
@@ -12,6 +12,12 @@ metrics:
12
  model-index:
13
  - name: indobert-lite-base-p2
14
  results: []
 
 
 
 
 
 
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -20,24 +26,36 @@ should probably proofread and complete it, then remove this comment. -->
20
  # indobert-lite-base-p2
21
 
22
  This model is a fine-tuned version of [indobenchmark/indobert-lite-base-p2](https://huggingface.co/indobenchmark/indobert-lite-base-p2) on the None dataset.
23
- It achieves the following results on the evaluation set:
24
  - Loss: 0.4257
25
  - Accuracy: 0.9291
26
  - Precision: 0.8637
27
  - Recall: 0.8651
28
  - F1: 0.8643
29
 
 
 
 
 
 
 
 
30
  ## Model description
31
 
32
- More information needed
 
 
 
33
 
34
  ## Intended uses & limitations
35
 
36
- More information needed
 
37
 
38
  ## Training and evaluation data
39
 
40
- More information needed
 
41
 
42
  ## Training procedure
43
 
@@ -68,4 +86,4 @@ The following hyperparameters were used during training:
68
  - Transformers 4.48.2
69
  - Pytorch 2.6.0+cu126
70
  - Datasets 3.2.0
71
- - Tokenizers 0.21.0
 
12
  model-index:
13
  - name: indobert-lite-base-p2
14
  results: []
15
+ datasets:
16
+ - indonlp/indonlu
17
+ - SEACrowd/id_google_play_review
18
+ language:
19
+ - id
20
+ pipeline_tag: text-classification
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
26
  # indobert-lite-base-p2
27
 
28
  This model is a fine-tuned version of [indobenchmark/indobert-lite-base-p2](https://huggingface.co/indobenchmark/indobert-lite-base-p2) on the None dataset.
29
+ It achieves the following results on the evaluation set for combined dataset from indonlu-smsa and id_google_play_review:
30
  - Loss: 0.4257
31
  - Accuracy: 0.9291
32
  - Precision: 0.8637
33
  - Recall: 0.8651
34
  - F1: 0.8643
35
 
36
+ Seperate evaluation
37
+ indonlu/indonlu-smsa
38
+ - Accuracy: 0.9269
39
+ - Precision: 0.9067
40
+ - Recall: 0.8948
41
+ - F1: 0.89995
42
+
43
  ## Model description
44
 
45
+ https://huggingface.co/indobenchmark/indobert-lite-base-p2
46
+
47
+ To Do:
48
+ - Add optimized model from optimum
49
 
50
  ## Intended uses & limitations
51
 
52
+ Sentiment Analysis, this model more lightweight than bert base and roberta base
53
+ ofc because this is lite model haha
54
 
55
  ## Training and evaluation data
56
 
57
+ The training combined all training data from indonlu-smsa and id google play review
58
+ The evaluation is conducted using the validation split
59
 
60
  ## Training procedure
61
 
 
86
  - Transformers 4.48.2
87
  - Pytorch 2.6.0+cu126
88
  - Datasets 3.2.0
89
+ - Tokenizers 0.21.0