--- license: openrail++ --- This checkkpoint is compiled by [ByteDance/SDXL-Lightning](https://huggingface.co/ByteDance/SDXL-Lightning) for AWS Inf2. ## Compilation Download the unet checkpoint from [ByteDance/SDXL-Lightning](https://huggingface.co/ByteDance/SDXL-Lightning) and replace the unet checkpoint under the original sdxl checkpoint: ```python from huggingface_hub import hf_hub_download repo = "ByteDance/SDXL-Lightning" ckpt = "sdxl_lightning_4step_unet.safetensors" hf_hub_download(repo, ckpt) ``` Replace the unet: ```bash cp /home/ubuntu/.cache/huggingface/hub/models--ByteDance--SDXL-Lightning/snapshots/xxxxxx/sdxl_lightning_4step_unet.safetensors stable-diffusion-xl-lightning/unet/diffusion_pytorch_model.safetensors ``` Compile the whole pipeline: ```python from optimum.neuron import NeuronStableDiffusionXLPipeline model_id = "stable-diffusion-xl-lightning" num_images_per_prompt = 1 input_shapes = {"batch_size": 1, "height": 1024, "width": 1024, "num_images_per_prompt": num_images_per_prompt} compiler_args = {"auto_cast": "matmul", "auto_cast_type": "bf16"} stable_diffusion = NeuronStableDiffusionXLPipeline.from_pretrained( model_id, export=True, **compiler_args, **input_shapes ) save_directory = "sdxl_lightning_4_steps_neuronx/" stable_diffusion.save_pretrained(save_directory) # push to hub ``` ## Inference ```python from optimum.neuron import NeuronStableDiffusionXLPipeline from diffusers import EulerDiscreteScheduler pipe = NeuronStableDiffusionXLPipeline.from_pretrained("aws-neuron/SDXL-Lightning-4steps-neuronx") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png") ```