--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: facebook/esm-1b model-index: - name: ESM1b_AAV2_classification results: [] --- # ESM1b_AAV2_classification To load tokenizer from ESM, you need to install transformers with this version as follow: !git clone -b add_esm-proper --single-branch https://github.com/liujas000/transformers.git !pip -q install ./transformers This model is a fine-tuned version of [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) on AAV2 dataset with ~230k sequences (Bryant et al 2020). The WT sequence (aa561-588): D E E E I R T T N P V A T E Q Y G S V S T N L Q R G N R Maximum length: 50 It achieves the following results on the evaluation set. Note:this is result of the last epoch, I think the pushed model is loaded with best checkpoint - best val_loss, I'm not so sure though :/ - Loss: 0.2250 - Accuracy: 0.9620 - F1: 0.9632 - Precision: 0.9642 - Recall: 0.9622 - Auroc: 0.9620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | No log | 1.0 | 232 | 0.1311 | 0.9495 | 0.9501 | 0.9711 | 0.9299 | 0.9502 | | No log | 2.0 | 464 | 0.1032 | 0.9606 | 0.9620 | 0.9583 | 0.9657 | 0.9604 | | 0.1924 | 3.0 | 696 | 0.0995 | 0.9627 | 0.9641 | 0.9584 | 0.9700 | 0.9625 | | 0.1924 | 4.0 | 928 | 0.1218 | 0.9611 | 0.9624 | 0.9607 | 0.9641 | 0.9610 | | 0.067 | 5.0 | 1160 | 0.1187 | 0.9622 | 0.9633 | 0.9678 | 0.9588 | 0.9623 | | 0.067 | 6.0 | 1392 | 0.1514 | 0.9612 | 0.9621 | 0.9710 | 0.9534 | 0.9615 | | 0.0271 | 7.0 | 1624 | 0.1890 | 0.9612 | 0.9626 | 0.9580 | 0.9673 | 0.9610 | | 0.0271 | 8.0 | 1856 | 0.2250 | 0.9620 | 0.9632 | 0.9642 | 0.9622 | 0.9620 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3