--- language: - en library_name: sentence-transformers license: mit pipeline_tag: sentence-similarity tags: - feature-extraction - mteb - sentence-similarity - sentence-transformers model-index: - name: GIST-large-Embedding-v0 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.5820895522388 - type: ap value: 38.32190121241783 - type: f1 value: 69.44777155231054 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.40514999999998 - type: ap value: 90.2011565132406 - type: f1 value: 93.39486246843605 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.05999999999999 - type: f1 value: 48.58702718571088 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 38.407000000000004 - type: map_at_10 value: 54.822 - type: map_at_100 value: 55.387 - type: map_at_1000 value: 55.388999999999996 - type: map_at_3 value: 50.308 - type: map_at_5 value: 53.199 - type: mrr_at_1 value: 39.900000000000006 - type: mrr_at_10 value: 55.385 - type: mrr_at_100 value: 55.936 - type: mrr_at_1000 value: 55.93900000000001 - type: mrr_at_3 value: 50.853 - type: mrr_at_5 value: 53.738 - type: ndcg_at_1 value: 38.407000000000004 - type: ndcg_at_10 value: 63.38 - type: ndcg_at_100 value: 65.52900000000001 - type: ndcg_at_1000 value: 65.58800000000001 - type: ndcg_at_3 value: 54.26 - type: ndcg_at_5 value: 59.488 - type: precision_at_1 value: 38.407000000000004 - type: precision_at_10 value: 9.04 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 21.906 - type: precision_at_5 value: 15.690000000000001 - type: recall_at_1 value: 38.407000000000004 - type: recall_at_10 value: 90.398 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 65.718 - type: recall_at_5 value: 78.45 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.49766333679089 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 42.57731111438094 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.70120072857361 - type: mrr value: 77.86714593501297 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 90.73821860690765 - type: cos_sim_spearman value: 89.17070651383446 - type: euclidean_pearson value: 88.28303958293029 - type: euclidean_spearman value: 88.81889126856979 - type: manhattan_pearson value: 88.09080621828731 - type: manhattan_spearman value: 88.55924679817751 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 88.10064935064933 - type: f1 value: 88.08460758973867 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.338228337929976 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.179156232378226 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 33.440999999999995 - type: map_at_10 value: 45.495000000000005 - type: map_at_100 value: 47.132000000000005 - type: map_at_1000 value: 47.253 - type: map_at_3 value: 41.766 - type: map_at_5 value: 43.873 - type: mrr_at_1 value: 40.772999999999996 - type: mrr_at_10 value: 51.627 - type: mrr_at_100 value: 52.364 - type: mrr_at_1000 value: 52.397000000000006 - type: mrr_at_3 value: 48.951 - type: mrr_at_5 value: 50.746 - type: ndcg_at_1 value: 40.772999999999996 - type: ndcg_at_10 value: 52.306 - type: ndcg_at_100 value: 57.753 - type: ndcg_at_1000 value: 59.36900000000001 - type: ndcg_at_3 value: 47.177 - type: ndcg_at_5 value: 49.71 - type: precision_at_1 value: 40.772999999999996 - type: precision_at_10 value: 10.129000000000001 - type: precision_at_100 value: 1.617 - type: precision_at_1000 value: 0.208 - type: precision_at_3 value: 22.985 - type: precision_at_5 value: 16.652 - type: recall_at_1 value: 33.440999999999995 - type: recall_at_10 value: 65.121 - type: recall_at_100 value: 87.55199999999999 - type: recall_at_1000 value: 97.41300000000001 - type: recall_at_3 value: 49.958999999999996 - type: recall_at_5 value: 57.14900000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.126 - type: map_at_10 value: 42.856 - type: map_at_100 value: 44.134 - type: map_at_1000 value: 44.274 - type: map_at_3 value: 39.594 - type: map_at_5 value: 41.504999999999995 - type: mrr_at_1 value: 40.127 - type: mrr_at_10 value: 48.736000000000004 - type: mrr_at_100 value: 49.303999999999995 - type: mrr_at_1000 value: 49.356 - type: mrr_at_3 value: 46.263 - type: mrr_at_5 value: 47.878 - type: ndcg_at_1 value: 40.127 - type: ndcg_at_10 value: 48.695 - type: ndcg_at_100 value: 52.846000000000004 - type: ndcg_at_1000 value: 54.964 - type: ndcg_at_3 value: 44.275 - type: ndcg_at_5 value: 46.54 - type: precision_at_1 value: 40.127 - type: precision_at_10 value: 9.229 - type: precision_at_100 value: 1.473 - type: precision_at_1000 value: 0.19499999999999998 - type: precision_at_3 value: 21.444 - type: precision_at_5 value: 15.389 - type: recall_at_1 value: 32.126 - type: recall_at_10 value: 58.971 - type: recall_at_100 value: 76.115 - type: recall_at_1000 value: 89.556 - type: recall_at_3 value: 45.891 - type: recall_at_5 value: 52.242 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 41.312 - type: map_at_10 value: 54.510000000000005 - type: map_at_100 value: 55.544000000000004 - type: map_at_1000 value: 55.593 - type: map_at_3 value: 50.859 - type: map_at_5 value: 52.839999999999996 - type: mrr_at_1 value: 47.147 - type: mrr_at_10 value: 57.678 - type: mrr_at_100 value: 58.287 - type: mrr_at_1000 value: 58.312 - type: mrr_at_3 value: 55.025999999999996 - type: mrr_at_5 value: 56.55 - type: ndcg_at_1 value: 47.147 - type: ndcg_at_10 value: 60.672000000000004 - type: ndcg_at_100 value: 64.411 - type: ndcg_at_1000 value: 65.35499999999999 - type: ndcg_at_3 value: 54.643 - type: ndcg_at_5 value: 57.461 - type: precision_at_1 value: 47.147 - type: precision_at_10 value: 9.881 - type: precision_at_100 value: 1.27 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 24.556 - type: precision_at_5 value: 16.814999999999998 - type: recall_at_1 value: 41.312 - type: recall_at_10 value: 75.62299999999999 - type: recall_at_100 value: 91.388 - type: recall_at_1000 value: 98.08 - type: recall_at_3 value: 59.40299999999999 - type: recall_at_5 value: 66.43900000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.609 - type: map_at_10 value: 37.614 - type: map_at_100 value: 38.584 - type: map_at_1000 value: 38.652 - type: map_at_3 value: 34.731 - type: map_at_5 value: 36.308 - type: mrr_at_1 value: 29.944 - type: mrr_at_10 value: 39.829 - type: mrr_at_100 value: 40.659 - type: mrr_at_1000 value: 40.709 - type: mrr_at_3 value: 37.269000000000005 - type: mrr_at_5 value: 38.625 - type: ndcg_at_1 value: 29.944 - type: ndcg_at_10 value: 43.082 - type: ndcg_at_100 value: 47.857 - type: ndcg_at_1000 value: 49.612 - type: ndcg_at_3 value: 37.578 - type: ndcg_at_5 value: 40.135 - type: precision_at_1 value: 29.944 - type: precision_at_10 value: 6.678000000000001 - type: precision_at_100 value: 0.951 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 16.045 - type: precision_at_5 value: 11.073 - type: recall_at_1 value: 27.609 - type: recall_at_10 value: 57.718 - type: recall_at_100 value: 79.768 - type: recall_at_1000 value: 92.868 - type: recall_at_3 value: 42.876 - type: recall_at_5 value: 49.104 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.071 - type: map_at_10 value: 27.471 - type: map_at_100 value: 28.71 - type: map_at_1000 value: 28.833 - type: map_at_3 value: 24.698 - type: map_at_5 value: 26.461000000000002 - type: mrr_at_1 value: 22.387999999999998 - type: mrr_at_10 value: 32.522 - type: mrr_at_100 value: 33.393 - type: mrr_at_1000 value: 33.455 - type: mrr_at_3 value: 29.830000000000002 - type: mrr_at_5 value: 31.472 - type: ndcg_at_1 value: 22.387999999999998 - type: ndcg_at_10 value: 33.278999999999996 - type: ndcg_at_100 value: 39.043 - type: ndcg_at_1000 value: 41.763 - type: ndcg_at_3 value: 28.310999999999996 - type: ndcg_at_5 value: 31.007 - type: precision_at_1 value: 22.387999999999998 - type: precision_at_10 value: 6.157 - type: precision_at_100 value: 1.042 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 13.972000000000001 - type: precision_at_5 value: 10.274 - type: recall_at_1 value: 18.071 - type: recall_at_10 value: 46.025 - type: recall_at_100 value: 71.153 - type: recall_at_1000 value: 90.232 - type: recall_at_3 value: 32.311 - type: recall_at_5 value: 39.296 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.813000000000002 - type: map_at_10 value: 42.594 - type: map_at_100 value: 43.949 - type: map_at_1000 value: 44.052 - type: map_at_3 value: 39.1 - type: map_at_5 value: 41.111 - type: mrr_at_1 value: 37.824999999999996 - type: mrr_at_10 value: 48.06 - type: mrr_at_100 value: 48.91 - type: mrr_at_1000 value: 48.946 - type: mrr_at_3 value: 45.509 - type: mrr_at_5 value: 47.073 - type: ndcg_at_1 value: 37.824999999999996 - type: ndcg_at_10 value: 48.882 - type: ndcg_at_100 value: 54.330999999999996 - type: ndcg_at_1000 value: 56.120999999999995 - type: ndcg_at_3 value: 43.529 - type: ndcg_at_5 value: 46.217999999999996 - type: precision_at_1 value: 37.824999999999996 - type: precision_at_10 value: 8.845 - type: precision_at_100 value: 1.34 - type: precision_at_1000 value: 0.168 - type: precision_at_3 value: 20.757 - type: precision_at_5 value: 14.802999999999999 - type: recall_at_1 value: 30.813000000000002 - type: recall_at_10 value: 61.895999999999994 - type: recall_at_100 value: 84.513 - type: recall_at_1000 value: 95.817 - type: recall_at_3 value: 47.099000000000004 - type: recall_at_5 value: 54.031 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.735999999999997 - type: map_at_10 value: 36.799 - type: map_at_100 value: 38.246 - type: map_at_1000 value: 38.353 - type: map_at_3 value: 33.133 - type: map_at_5 value: 34.954 - type: mrr_at_1 value: 31.849 - type: mrr_at_10 value: 41.928 - type: mrr_at_100 value: 42.846000000000004 - type: mrr_at_1000 value: 42.894 - type: mrr_at_3 value: 39.117000000000004 - type: mrr_at_5 value: 40.521 - type: ndcg_at_1 value: 31.849 - type: ndcg_at_10 value: 43.143 - type: ndcg_at_100 value: 48.963 - type: ndcg_at_1000 value: 51.041000000000004 - type: ndcg_at_3 value: 37.218 - type: ndcg_at_5 value: 39.542 - type: precision_at_1 value: 31.849 - type: precision_at_10 value: 8.231 - type: precision_at_100 value: 1.277 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 18.037 - type: precision_at_5 value: 12.945 - type: recall_at_1 value: 25.735999999999997 - type: recall_at_10 value: 56.735 - type: recall_at_100 value: 81.04 - type: recall_at_1000 value: 94.845 - type: recall_at_3 value: 40.239999999999995 - type: recall_at_5 value: 46.378 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.580333333333336 - type: map_at_10 value: 37.70558333333334 - type: map_at_100 value: 38.94941666666667 - type: map_at_1000 value: 39.062083333333334 - type: map_at_3 value: 34.63333333333334 - type: map_at_5 value: 36.35241666666666 - type: mrr_at_1 value: 32.64866666666667 - type: mrr_at_10 value: 42.018499999999996 - type: mrr_at_100 value: 42.83391666666666 - type: mrr_at_1000 value: 42.884166666666665 - type: mrr_at_3 value: 39.476499999999994 - type: mrr_at_5 value: 40.96983333333334 - type: ndcg_at_1 value: 32.64866666666667 - type: ndcg_at_10 value: 43.43866666666667 - type: ndcg_at_100 value: 48.569833333333335 - type: ndcg_at_1000 value: 50.6495 - type: ndcg_at_3 value: 38.327166666666656 - type: ndcg_at_5 value: 40.76941666666667 - type: precision_at_1 value: 32.64866666666667 - type: precision_at_10 value: 7.652333333333332 - type: precision_at_100 value: 1.2066666666666666 - type: precision_at_1000 value: 0.15841666666666668 - type: precision_at_3 value: 17.75108333333333 - type: precision_at_5 value: 12.641916666666669 - type: recall_at_1 value: 27.580333333333336 - type: recall_at_10 value: 56.02591666666667 - type: recall_at_100 value: 78.317 - type: recall_at_1000 value: 92.52608333333332 - type: recall_at_3 value: 41.84283333333333 - type: recall_at_5 value: 48.105666666666664 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.876 - type: map_at_10 value: 34.521 - type: map_at_100 value: 35.581 - type: map_at_1000 value: 35.674 - type: map_at_3 value: 32.501000000000005 - type: map_at_5 value: 33.602 - type: mrr_at_1 value: 31.441999999999997 - type: mrr_at_10 value: 37.669999999999995 - type: mrr_at_100 value: 38.523 - type: mrr_at_1000 value: 38.59 - type: mrr_at_3 value: 35.762 - type: mrr_at_5 value: 36.812 - type: ndcg_at_1 value: 31.441999999999997 - type: ndcg_at_10 value: 38.46 - type: ndcg_at_100 value: 43.479 - type: ndcg_at_1000 value: 45.858 - type: ndcg_at_3 value: 34.668 - type: ndcg_at_5 value: 36.416 - type: precision_at_1 value: 31.441999999999997 - type: precision_at_10 value: 5.782 - type: precision_at_100 value: 0.91 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 14.417 - type: precision_at_5 value: 9.876999999999999 - type: recall_at_1 value: 27.876 - type: recall_at_10 value: 47.556 - type: recall_at_100 value: 70.39699999999999 - type: recall_at_1000 value: 87.969 - type: recall_at_3 value: 37.226 - type: recall_at_5 value: 41.43 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.854000000000003 - type: map_at_10 value: 26.632 - type: map_at_100 value: 27.849 - type: map_at_1000 value: 27.977 - type: map_at_3 value: 24.089 - type: map_at_5 value: 25.477 - type: mrr_at_1 value: 22.987 - type: mrr_at_10 value: 30.781999999999996 - type: mrr_at_100 value: 31.746000000000002 - type: mrr_at_1000 value: 31.818 - type: mrr_at_3 value: 28.43 - type: mrr_at_5 value: 29.791 - type: ndcg_at_1 value: 22.987 - type: ndcg_at_10 value: 31.585 - type: ndcg_at_100 value: 37.32 - type: ndcg_at_1000 value: 40.072 - type: ndcg_at_3 value: 27.058 - type: ndcg_at_5 value: 29.137999999999998 - type: precision_at_1 value: 22.987 - type: precision_at_10 value: 5.76 - type: precision_at_100 value: 1.018 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_3 value: 12.767000000000001 - type: precision_at_5 value: 9.257 - type: recall_at_1 value: 18.854000000000003 - type: recall_at_10 value: 42.349 - type: recall_at_100 value: 68.15299999999999 - type: recall_at_1000 value: 87.44 - type: recall_at_3 value: 29.715999999999998 - type: recall_at_5 value: 35.085 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.094 - type: map_at_10 value: 38.22 - type: map_at_100 value: 39.352 - type: map_at_1000 value: 39.452 - type: map_at_3 value: 35.339 - type: map_at_5 value: 36.78 - type: mrr_at_1 value: 33.022 - type: mrr_at_10 value: 42.466 - type: mrr_at_100 value: 43.3 - type: mrr_at_1000 value: 43.356 - type: mrr_at_3 value: 40.159 - type: mrr_at_5 value: 41.272999999999996 - type: ndcg_at_1 value: 33.022 - type: ndcg_at_10 value: 43.976 - type: ndcg_at_100 value: 49.008 - type: ndcg_at_1000 value: 51.154999999999994 - type: ndcg_at_3 value: 38.891 - type: ndcg_at_5 value: 40.897 - type: precision_at_1 value: 33.022 - type: precision_at_10 value: 7.396999999999999 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 17.724 - type: precision_at_5 value: 12.239 - type: recall_at_1 value: 28.094 - type: recall_at_10 value: 57.162 - type: recall_at_100 value: 78.636 - type: recall_at_1000 value: 93.376 - type: recall_at_3 value: 43.328 - type: recall_at_5 value: 48.252 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.937 - type: map_at_10 value: 34.82 - type: map_at_100 value: 36.405 - type: map_at_1000 value: 36.626 - type: map_at_3 value: 31.548 - type: map_at_5 value: 33.355000000000004 - type: mrr_at_1 value: 30.435000000000002 - type: mrr_at_10 value: 39.946 - type: mrr_at_100 value: 40.873 - type: mrr_at_1000 value: 40.910000000000004 - type: mrr_at_3 value: 37.088 - type: mrr_at_5 value: 38.808 - type: ndcg_at_1 value: 30.435000000000002 - type: ndcg_at_10 value: 41.25 - type: ndcg_at_100 value: 47.229 - type: ndcg_at_1000 value: 49.395 - type: ndcg_at_3 value: 35.801 - type: ndcg_at_5 value: 38.457 - type: precision_at_1 value: 30.435000000000002 - type: precision_at_10 value: 8.083 - type: precision_at_100 value: 1.601 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 17.061999999999998 - type: precision_at_5 value: 12.767000000000001 - type: recall_at_1 value: 24.937 - type: recall_at_10 value: 53.905 - type: recall_at_100 value: 80.607 - type: recall_at_1000 value: 93.728 - type: recall_at_3 value: 38.446000000000005 - type: recall_at_5 value: 45.188 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.095000000000002 - type: map_at_10 value: 30.935000000000002 - type: map_at_100 value: 31.907000000000004 - type: map_at_1000 value: 32.006 - type: map_at_3 value: 28.242 - type: map_at_5 value: 29.963 - type: mrr_at_1 value: 23.845 - type: mrr_at_10 value: 32.978 - type: mrr_at_100 value: 33.802 - type: mrr_at_1000 value: 33.867000000000004 - type: mrr_at_3 value: 30.314000000000004 - type: mrr_at_5 value: 32.089 - type: ndcg_at_1 value: 23.845 - type: ndcg_at_10 value: 35.934 - type: ndcg_at_100 value: 40.598 - type: ndcg_at_1000 value: 43.089 - type: ndcg_at_3 value: 30.776999999999997 - type: ndcg_at_5 value: 33.711999999999996 - type: precision_at_1 value: 23.845 - type: precision_at_10 value: 5.656 - type: precision_at_100 value: 0.861 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 13.247 - type: precision_at_5 value: 9.612 - type: recall_at_1 value: 22.095000000000002 - type: recall_at_10 value: 49.25 - type: recall_at_100 value: 70.482 - type: recall_at_1000 value: 88.98899999999999 - type: recall_at_3 value: 35.619 - type: recall_at_5 value: 42.674 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 14.154 - type: map_at_10 value: 24.654999999999998 - type: map_at_100 value: 26.723999999999997 - type: map_at_1000 value: 26.912000000000003 - type: map_at_3 value: 20.4 - type: map_at_5 value: 22.477 - type: mrr_at_1 value: 32.117000000000004 - type: mrr_at_10 value: 44.590999999999994 - type: mrr_at_100 value: 45.425 - type: mrr_at_1000 value: 45.456 - type: mrr_at_3 value: 41.281 - type: mrr_at_5 value: 43.219 - type: ndcg_at_1 value: 32.117000000000004 - type: ndcg_at_10 value: 33.994 - type: ndcg_at_100 value: 41.438 - type: ndcg_at_1000 value: 44.611000000000004 - type: ndcg_at_3 value: 27.816000000000003 - type: ndcg_at_5 value: 29.816 - type: precision_at_1 value: 32.117000000000004 - type: precision_at_10 value: 10.756 - type: precision_at_100 value: 1.8679999999999999 - type: precision_at_1000 value: 0.246 - type: precision_at_3 value: 20.803 - type: precision_at_5 value: 15.987000000000002 - type: recall_at_1 value: 14.154 - type: recall_at_10 value: 40.489999999999995 - type: recall_at_100 value: 65.635 - type: recall_at_1000 value: 83.276 - type: recall_at_3 value: 25.241000000000003 - type: recall_at_5 value: 31.211 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.332 - type: map_at_10 value: 20.462 - type: map_at_100 value: 29.473 - type: map_at_1000 value: 31.215 - type: map_at_3 value: 14.466999999999999 - type: map_at_5 value: 16.922 - type: mrr_at_1 value: 69.5 - type: mrr_at_10 value: 77.039 - type: mrr_at_100 value: 77.265 - type: mrr_at_1000 value: 77.271 - type: mrr_at_3 value: 75.5 - type: mrr_at_5 value: 76.4 - type: ndcg_at_1 value: 57.125 - type: ndcg_at_10 value: 42.958 - type: ndcg_at_100 value: 48.396 - type: ndcg_at_1000 value: 55.897 - type: ndcg_at_3 value: 47.188 - type: ndcg_at_5 value: 44.376 - type: precision_at_1 value: 69.5 - type: precision_at_10 value: 34.5 - type: precision_at_100 value: 11.18 - type: precision_at_1000 value: 2.13 - type: precision_at_3 value: 51.083 - type: precision_at_5 value: 43.1 - type: recall_at_1 value: 9.332 - type: recall_at_10 value: 26.422 - type: recall_at_100 value: 56.098000000000006 - type: recall_at_1000 value: 79.66 - type: recall_at_3 value: 15.703 - type: recall_at_5 value: 19.644000000000002 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 54.72 - type: f1 value: 49.67819606587526 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 74.97 - type: map_at_10 value: 82.956 - type: map_at_100 value: 83.193 - type: map_at_1000 value: 83.208 - type: map_at_3 value: 81.837 - type: map_at_5 value: 82.57 - type: mrr_at_1 value: 80.783 - type: mrr_at_10 value: 87.546 - type: mrr_at_100 value: 87.627 - type: mrr_at_1000 value: 87.63 - type: mrr_at_3 value: 86.79400000000001 - type: mrr_at_5 value: 87.32799999999999 - type: ndcg_at_1 value: 80.783 - type: ndcg_at_10 value: 86.54899999999999 - type: ndcg_at_100 value: 87.355 - type: ndcg_at_1000 value: 87.629 - type: ndcg_at_3 value: 84.82 - type: ndcg_at_5 value: 85.83800000000001 - type: precision_at_1 value: 80.783 - type: precision_at_10 value: 10.327 - type: precision_at_100 value: 1.094 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.218 - type: precision_at_5 value: 20.012 - type: recall_at_1 value: 74.97 - type: recall_at_10 value: 93.072 - type: recall_at_100 value: 96.218 - type: recall_at_1000 value: 97.991 - type: recall_at_3 value: 88.357 - type: recall_at_5 value: 90.983 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 21.12 - type: map_at_10 value: 35.908 - type: map_at_100 value: 37.895 - type: map_at_1000 value: 38.068000000000005 - type: map_at_3 value: 31.189 - type: map_at_5 value: 33.908 - type: mrr_at_1 value: 42.901 - type: mrr_at_10 value: 52.578 - type: mrr_at_100 value: 53.308 - type: mrr_at_1000 value: 53.342 - type: mrr_at_3 value: 50.385999999999996 - type: mrr_at_5 value: 51.62799999999999 - type: ndcg_at_1 value: 42.901 - type: ndcg_at_10 value: 44.302 - type: ndcg_at_100 value: 51.132999999999996 - type: ndcg_at_1000 value: 53.848 - type: ndcg_at_3 value: 40.464 - type: ndcg_at_5 value: 41.743 - type: precision_at_1 value: 42.901 - type: precision_at_10 value: 12.423 - type: precision_at_100 value: 1.968 - type: precision_at_1000 value: 0.246 - type: precision_at_3 value: 27.622999999999998 - type: precision_at_5 value: 20.278 - type: recall_at_1 value: 21.12 - type: recall_at_10 value: 52.091 - type: recall_at_100 value: 77.062 - type: recall_at_1000 value: 93.082 - type: recall_at_3 value: 37.223 - type: recall_at_5 value: 43.826 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 38.940000000000005 - type: map_at_10 value: 62.239999999999995 - type: map_at_100 value: 63.141000000000005 - type: map_at_1000 value: 63.205999999999996 - type: map_at_3 value: 58.738 - type: map_at_5 value: 60.924 - type: mrr_at_1 value: 77.88000000000001 - type: mrr_at_10 value: 83.7 - type: mrr_at_100 value: 83.882 - type: mrr_at_1000 value: 83.889 - type: mrr_at_3 value: 82.748 - type: mrr_at_5 value: 83.381 - type: ndcg_at_1 value: 77.88000000000001 - type: ndcg_at_10 value: 70.462 - type: ndcg_at_100 value: 73.564 - type: ndcg_at_1000 value: 74.78099999999999 - type: ndcg_at_3 value: 65.524 - type: ndcg_at_5 value: 68.282 - type: precision_at_1 value: 77.88000000000001 - type: precision_at_10 value: 14.81 - type: precision_at_100 value: 1.7229999999999999 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 42.083999999999996 - type: precision_at_5 value: 27.43 - type: recall_at_1 value: 38.940000000000005 - type: recall_at_10 value: 74.051 - type: recall_at_100 value: 86.158 - type: recall_at_1000 value: 94.146 - type: recall_at_3 value: 63.126000000000005 - type: recall_at_5 value: 68.575 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 91.23440000000001 - type: ap value: 87.33490392265892 - type: f1 value: 91.21374626021836 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 22.137999999999998 - type: map_at_10 value: 34.471000000000004 - type: map_at_100 value: 35.634 - type: map_at_1000 value: 35.685 - type: map_at_3 value: 30.587999999999997 - type: map_at_5 value: 32.812999999999995 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 35.092 - type: mrr_at_100 value: 36.193999999999996 - type: mrr_at_1000 value: 36.238 - type: mrr_at_3 value: 31.28 - type: mrr_at_5 value: 33.498 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 41.388999999999996 - type: ndcg_at_100 value: 46.967999999999996 - type: ndcg_at_1000 value: 48.178 - type: ndcg_at_3 value: 33.503 - type: ndcg_at_5 value: 37.484 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 6.54 - type: precision_at_100 value: 0.9339999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.249999999999998 - type: precision_at_5 value: 10.562000000000001 - type: recall_at_1 value: 22.137999999999998 - type: recall_at_10 value: 62.629999999999995 - type: recall_at_100 value: 88.375 - type: recall_at_1000 value: 97.529 - type: recall_at_3 value: 41.245 - type: recall_at_5 value: 50.808 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.25079799361606 - type: f1 value: 95.00726023695032 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 78.23757409940721 - type: f1 value: 58.534958803195714 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.20040349697378 - type: f1 value: 74.31261149784696 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.35104236718227 - type: f1 value: 79.7373049864316 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.478828180753126 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.25696147904426 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.82488548405117 - type: mrr value: 34.066706809031096 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.557 - type: map_at_10 value: 15.055 - type: map_at_100 value: 19.575 - type: map_at_1000 value: 21.267 - type: map_at_3 value: 10.86 - type: map_at_5 value: 12.83 - type: mrr_at_1 value: 50.464 - type: mrr_at_10 value: 59.050999999999995 - type: mrr_at_100 value: 59.436 - type: mrr_at_1000 value: 59.476 - type: mrr_at_3 value: 56.811 - type: mrr_at_5 value: 58.08 - type: ndcg_at_1 value: 47.988 - type: ndcg_at_10 value: 38.645 - type: ndcg_at_100 value: 36.339 - type: ndcg_at_1000 value: 45.279 - type: ndcg_at_3 value: 43.35 - type: ndcg_at_5 value: 41.564 - type: precision_at_1 value: 49.845 - type: precision_at_10 value: 28.544999999999998 - type: precision_at_100 value: 9.322 - type: precision_at_1000 value: 2.258 - type: precision_at_3 value: 40.144000000000005 - type: precision_at_5 value: 35.913000000000004 - type: recall_at_1 value: 6.557 - type: recall_at_10 value: 19.5 - type: recall_at_100 value: 37.153999999999996 - type: recall_at_1000 value: 69.581 - type: recall_at_3 value: 12.133 - type: recall_at_5 value: 15.43 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 31.740000000000002 - type: map_at_10 value: 48.150999999999996 - type: map_at_100 value: 49.125 - type: map_at_1000 value: 49.149 - type: map_at_3 value: 43.645 - type: map_at_5 value: 46.417 - type: mrr_at_1 value: 35.892 - type: mrr_at_10 value: 50.524 - type: mrr_at_100 value: 51.232 - type: mrr_at_1000 value: 51.24999999999999 - type: mrr_at_3 value: 46.852 - type: mrr_at_5 value: 49.146 - type: ndcg_at_1 value: 35.892 - type: ndcg_at_10 value: 56.08800000000001 - type: ndcg_at_100 value: 60.077000000000005 - type: ndcg_at_1000 value: 60.632 - type: ndcg_at_3 value: 47.765 - type: ndcg_at_5 value: 52.322 - type: precision_at_1 value: 35.892 - type: precision_at_10 value: 9.296 - type: precision_at_100 value: 1.154 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 21.92 - type: precision_at_5 value: 15.781999999999998 - type: recall_at_1 value: 31.740000000000002 - type: recall_at_10 value: 77.725 - type: recall_at_100 value: 94.841 - type: recall_at_1000 value: 99.003 - type: recall_at_3 value: 56.407 - type: recall_at_5 value: 66.848 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.429 - type: map_at_10 value: 85.42699999999999 - type: map_at_100 value: 86.063 - type: map_at_1000 value: 86.077 - type: map_at_3 value: 82.573 - type: map_at_5 value: 84.371 - type: mrr_at_1 value: 82.34 - type: mrr_at_10 value: 88.247 - type: mrr_at_100 value: 88.357 - type: mrr_at_1000 value: 88.357 - type: mrr_at_3 value: 87.38 - type: mrr_at_5 value: 87.981 - type: ndcg_at_1 value: 82.34 - type: ndcg_at_10 value: 88.979 - type: ndcg_at_100 value: 90.18599999999999 - type: ndcg_at_1000 value: 90.254 - type: ndcg_at_3 value: 86.378 - type: ndcg_at_5 value: 87.821 - type: precision_at_1 value: 82.34 - type: precision_at_10 value: 13.482 - type: precision_at_100 value: 1.537 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.852999999999994 - type: precision_at_5 value: 24.798000000000002 - type: recall_at_1 value: 71.429 - type: recall_at_10 value: 95.64099999999999 - type: recall_at_100 value: 99.723 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 88.011 - type: recall_at_5 value: 92.246 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 60.62148584103299 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.2923987272903 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 5.128 - type: map_at_10 value: 14.63 - type: map_at_100 value: 17.285 - type: map_at_1000 value: 17.676 - type: map_at_3 value: 9.993 - type: map_at_5 value: 12.286999999999999 - type: mrr_at_1 value: 25.4 - type: mrr_at_10 value: 38.423 - type: mrr_at_100 value: 39.497 - type: mrr_at_1000 value: 39.531 - type: mrr_at_3 value: 34.9 - type: mrr_at_5 value: 37.01 - type: ndcg_at_1 value: 25.4 - type: ndcg_at_10 value: 24.062 - type: ndcg_at_100 value: 33.823 - type: ndcg_at_1000 value: 39.663 - type: ndcg_at_3 value: 22.246 - type: ndcg_at_5 value: 19.761 - type: precision_at_1 value: 25.4 - type: precision_at_10 value: 12.85 - type: precision_at_100 value: 2.71 - type: precision_at_1000 value: 0.41000000000000003 - type: precision_at_3 value: 21.4 - type: precision_at_5 value: 17.86 - type: recall_at_1 value: 5.128 - type: recall_at_10 value: 26.06 - type: recall_at_100 value: 54.993 - type: recall_at_1000 value: 83.165 - type: recall_at_3 value: 13.003 - type: recall_at_5 value: 18.117 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 87.5466779326323 - type: cos_sim_spearman value: 82.79782085421951 - type: euclidean_pearson value: 84.76929982677339 - type: euclidean_spearman value: 82.51802536005597 - type: manhattan_pearson value: 84.76736312526177 - type: manhattan_spearman value: 82.50799656335593 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.40486308108694 - type: cos_sim_spearman value: 77.12670500926937 - type: euclidean_pearson value: 85.23836845503847 - type: euclidean_spearman value: 78.41475117006176 - type: manhattan_pearson value: 85.24302039610805 - type: manhattan_spearman value: 78.4053162562707 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 88.83570289087565 - type: cos_sim_spearman value: 89.28563503553643 - type: euclidean_pearson value: 87.77516003996445 - type: euclidean_spearman value: 88.8656149534085 - type: manhattan_pearson value: 87.75568872417946 - type: manhattan_spearman value: 88.80445489340585 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 86.776406555485 - type: cos_sim_spearman value: 83.8288465070091 - type: euclidean_pearson value: 85.37827999808123 - type: euclidean_spearman value: 84.11079529992739 - type: manhattan_pearson value: 85.35336495689121 - type: manhattan_spearman value: 84.08618492649347 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.57644404820684 - type: cos_sim_spearman value: 89.69728364350713 - type: euclidean_pearson value: 88.28202320389443 - type: euclidean_spearman value: 88.9560567319321 - type: manhattan_pearson value: 88.29461100044172 - type: manhattan_spearman value: 88.96030920678558 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.05211938460621 - type: cos_sim_spearman value: 86.43413865667489 - type: euclidean_pearson value: 85.62760689259562 - type: euclidean_spearman value: 86.28867831982394 - type: manhattan_pearson value: 85.60828879163458 - type: manhattan_spearman value: 86.27823731462473 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 90.00254140466377 - type: cos_sim_spearman value: 89.66118745178284 - type: euclidean_pearson value: 89.46985446236553 - type: euclidean_spearman value: 88.92649032371526 - type: manhattan_pearson value: 89.49600028180247 - type: manhattan_spearman value: 88.86948431519099 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 68.93578321067938 - type: cos_sim_spearman value: 69.60639595839257 - type: euclidean_pearson value: 70.33485090574897 - type: euclidean_spearman value: 69.03380379185452 - type: manhattan_pearson value: 70.42097254943839 - type: manhattan_spearman value: 69.25296348304255 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.29588700755069 - type: cos_sim_spearman value: 88.30389489193672 - type: euclidean_pearson value: 87.60349838180346 - type: euclidean_spearman value: 87.91041868311692 - type: manhattan_pearson value: 87.59373630607907 - type: manhattan_spearman value: 87.88690174001724 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.8030655700857 - type: mrr value: 96.3950637234951 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 60.028000000000006 - type: map_at_10 value: 69.855 - type: map_at_100 value: 70.257 - type: map_at_1000 value: 70.283 - type: map_at_3 value: 66.769 - type: map_at_5 value: 68.679 - type: mrr_at_1 value: 62.666999999999994 - type: mrr_at_10 value: 70.717 - type: mrr_at_100 value: 71.00800000000001 - type: mrr_at_1000 value: 71.033 - type: mrr_at_3 value: 68.389 - type: mrr_at_5 value: 69.939 - type: ndcg_at_1 value: 62.666999999999994 - type: ndcg_at_10 value: 74.715 - type: ndcg_at_100 value: 76.364 - type: ndcg_at_1000 value: 76.89399999999999 - type: ndcg_at_3 value: 69.383 - type: ndcg_at_5 value: 72.322 - type: precision_at_1 value: 62.666999999999994 - type: precision_at_10 value: 10.067 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 27.111 - type: precision_at_5 value: 18.267 - type: recall_at_1 value: 60.028000000000006 - type: recall_at_10 value: 88.822 - type: recall_at_100 value: 96.167 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 74.367 - type: recall_at_5 value: 81.661 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.84554455445544 - type: cos_sim_ap value: 96.54482863244152 - type: cos_sim_f1 value: 92.13709677419355 - type: cos_sim_precision value: 92.88617886178862 - type: cos_sim_recall value: 91.4 - type: dot_accuracy value: 99.76039603960396 - type: dot_ap value: 93.20115278887057 - type: dot_f1 value: 87.92079207920793 - type: dot_precision value: 87.05882352941177 - type: dot_recall value: 88.8 - type: euclidean_accuracy value: 99.84950495049505 - type: euclidean_ap value: 96.53268343961348 - type: euclidean_f1 value: 92.23697650663942 - type: euclidean_precision value: 94.258872651357 - type: euclidean_recall value: 90.3 - type: manhattan_accuracy value: 99.85346534653465 - type: manhattan_ap value: 96.54495433438355 - type: manhattan_f1 value: 92.51012145748987 - type: manhattan_precision value: 93.64754098360656 - type: manhattan_recall value: 91.4 - type: max_accuracy value: 99.85346534653465 - type: max_ap value: 96.54495433438355 - type: max_f1 value: 92.51012145748987 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 66.46940443952006 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.396194493841584 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 54.881717673695555 - type: mrr value: 55.73439224174519 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.438177268254087 - type: cos_sim_spearman value: 30.96177698848688 - type: dot_pearson value: 30.513850376431435 - type: dot_spearman value: 29.932421046509706 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.21 - type: map_at_10 value: 1.727 - type: map_at_100 value: 9.881 - type: map_at_1000 value: 24.245 - type: map_at_3 value: 0.615 - type: map_at_5 value: 0.966 - type: mrr_at_1 value: 78.0 - type: mrr_at_10 value: 87.333 - type: mrr_at_100 value: 87.333 - type: mrr_at_1000 value: 87.333 - type: mrr_at_3 value: 86.333 - type: mrr_at_5 value: 87.333 - type: ndcg_at_1 value: 74.0 - type: ndcg_at_10 value: 69.12700000000001 - type: ndcg_at_100 value: 53.893 - type: ndcg_at_1000 value: 49.639 - type: ndcg_at_3 value: 74.654 - type: ndcg_at_5 value: 73.232 - type: precision_at_1 value: 78.0 - type: precision_at_10 value: 72.8 - type: precision_at_100 value: 55.42 - type: precision_at_1000 value: 21.73 - type: precision_at_3 value: 79.333 - type: precision_at_5 value: 77.2 - type: recall_at_1 value: 0.21 - type: recall_at_10 value: 1.9709999999999999 - type: recall_at_100 value: 13.555 - type: recall_at_1000 value: 46.961999999999996 - type: recall_at_3 value: 0.66 - type: recall_at_5 value: 1.052 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.456 - type: map_at_10 value: 9.426 - type: map_at_100 value: 16.066 - type: map_at_1000 value: 17.652 - type: map_at_3 value: 5.2459999999999996 - type: map_at_5 value: 6.5360000000000005 - type: mrr_at_1 value: 34.694 - type: mrr_at_10 value: 47.666 - type: mrr_at_100 value: 48.681999999999995 - type: mrr_at_1000 value: 48.681999999999995 - type: mrr_at_3 value: 43.878 - type: mrr_at_5 value: 46.224 - type: ndcg_at_1 value: 31.633 - type: ndcg_at_10 value: 23.454 - type: ndcg_at_100 value: 36.616 - type: ndcg_at_1000 value: 48.596000000000004 - type: ndcg_at_3 value: 28.267999999999997 - type: ndcg_at_5 value: 25.630999999999997 - type: precision_at_1 value: 34.694 - type: precision_at_10 value: 20.204 - type: precision_at_100 value: 7.754999999999999 - type: precision_at_1000 value: 1.5709999999999997 - type: precision_at_3 value: 29.252 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 2.456 - type: recall_at_10 value: 14.951 - type: recall_at_100 value: 48.399 - type: recall_at_1000 value: 85.077 - type: recall_at_3 value: 6.1370000000000005 - type: recall_at_5 value: 8.671 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.86240000000001 - type: ap value: 14.678570078747494 - type: f1 value: 55.295967793934445 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.17374080362195 - type: f1 value: 59.54410874861454 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 51.91227822485289 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.12523097097217 - type: cos_sim_ap value: 77.59606075943269 - type: cos_sim_f1 value: 71.11395646606915 - type: cos_sim_precision value: 69.07960199004975 - type: cos_sim_recall value: 73.27176781002639 - type: dot_accuracy value: 84.68736961316088 - type: dot_ap value: 68.47167450741459 - type: dot_f1 value: 64.42152354914874 - type: dot_precision value: 60.887949260042284 - type: dot_recall value: 68.3905013192612 - type: euclidean_accuracy value: 86.88084878106932 - type: euclidean_ap value: 77.27351204978599 - type: euclidean_f1 value: 70.99179716629381 - type: euclidean_precision value: 67.10526315789474 - type: euclidean_recall value: 75.35620052770449 - type: manhattan_accuracy value: 86.83316445133218 - type: manhattan_ap value: 77.21835357308716 - type: manhattan_f1 value: 71.05587004676349 - type: manhattan_precision value: 66.58210332103322 - type: manhattan_recall value: 76.17414248021109 - type: max_accuracy value: 87.12523097097217 - type: max_ap value: 77.59606075943269 - type: max_f1 value: 71.11395646606915 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.97232894787906 - type: cos_sim_ap value: 85.9613736469497 - type: cos_sim_f1 value: 78.40216655382532 - type: cos_sim_precision value: 72.97512437810946 - type: cos_sim_recall value: 84.70126270403449 - type: dot_accuracy value: 88.04866689952264 - type: dot_ap value: 83.15465089499936 - type: dot_f1 value: 76.32698287879329 - type: dot_precision value: 71.23223697378077 - type: dot_recall value: 82.20665229442562 - type: euclidean_accuracy value: 88.67543757519307 - type: euclidean_ap value: 85.4524355531532 - type: euclidean_f1 value: 77.78729106950081 - type: euclidean_precision value: 75.3009009009009 - type: euclidean_recall value: 80.44348629504158 - type: manhattan_accuracy value: 88.65991384328792 - type: manhattan_ap value: 85.43109069046837 - type: manhattan_f1 value: 77.72639551396425 - type: manhattan_precision value: 73.73402417962004 - type: manhattan_recall value: 82.17585463504774 - type: max_accuracy value: 88.97232894787906 - type: max_ap value: 85.9613736469497 - type: max_f1 value: 78.40216655382532 ---