--- library_name: transformers license: mit base_model: microsoft/deberta-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-large-Label_B-768-epochs-1 results: [] --- # deberta-large-Label_B-768-epochs-1 This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0712 - Accuracy: 0.1428 - F1: 0.0357 - Precision: 0.0204 - Recall: 0.1428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.5014 | 1.0 | 51181 | 3.0712 | 0.1428 | 0.0357 | 0.0204 | 0.1428 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0