--- license: apache-2.0 library_name: peft pipeline_tag: text-generation base_model: meta-llama/Llama-2-7b-hf --- ## Hindi-wiki-LLaMA Hindi Wikipedia Article Generation Model This repository contains a language generation model trained on Hindi Wikipedia articles using the Hugging Face Transformers library. The model is based on the Llama-2 architecture and fine-tuned on a large dataset of Hindi text from Wikipedia. ## Model Details - Base Model: Llama-2 - Pretraining Dataset: Hindi Wikipedia Articles - Tokenizer: Hugging Face Tokenizer - Model Architecture: Causal Language Modeling ```python from peft import AutoPeftModelForCausalLM base_model_name = "meta-llama/Llama-2-7b-hf" tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token output_dir = "./final_checkpoint" device_map = {"": 0} model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map=device_map, torch_dtype=torch.bfloat16) device = torch.device("cuda") text = "" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)) ``` ## Model Performance:-- The model has been trained on a substantial amount of Hindi Wikipedia articles, which allows it to generate coherent and contextually relevant text.