File size: 3,238 Bytes
11a160a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3752
- Precision: 0.5495
- Recall: 0.5949
- F1: 0.5713
- Accuracy: 0.9455

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 151  | 0.1826          | 0.4095    | 0.4084 | 0.4089 | 0.9362   |
| No log        | 2.0   | 302  | 0.1684          | 0.4941    | 0.5303 | 0.5116 | 0.9442   |
| No log        | 3.0   | 453  | 0.2528          | 0.5197    | 0.4477 | 0.4810 | 0.9398   |
| 0.1001        | 4.0   | 604  | 0.2100          | 0.5182    | 0.5583 | 0.5375 | 0.9439   |
| 0.1001        | 5.0   | 755  | 0.2556          | 0.5207    | 0.4783 | 0.4986 | 0.9419   |
| 0.1001        | 6.0   | 906  | 0.2908          | 0.4132    | 0.4204 | 0.4168 | 0.9365   |
| 0.0205        | 7.0   | 1057 | 0.3046          | 0.5       | 0.6236 | 0.5550 | 0.9435   |
| 0.0205        | 8.0   | 1208 | 0.3057          | 0.5324    | 0.5750 | 0.5529 | 0.9458   |
| 0.0205        | 9.0   | 1359 | 0.3122          | 0.5626    | 0.5776 | 0.5700 | 0.9469   |
| 0.0082        | 10.0  | 1510 | 0.3673          | 0.5733    | 0.5263 | 0.5488 | 0.9441   |
| 0.0082        | 11.0  | 1661 | 0.3432          | 0.5482    | 0.5270 | 0.5374 | 0.9455   |
| 0.0082        | 12.0  | 1812 | 0.3305          | 0.5590    | 0.5716 | 0.5652 | 0.9445   |
| 0.0082        | 13.0  | 1963 | 0.3293          | 0.5434    | 0.6009 | 0.5707 | 0.9431   |
| 0.005         | 14.0  | 2114 | 0.4080          | 0.5627    | 0.5803 | 0.5713 | 0.9451   |
| 0.005         | 15.0  | 2265 | 0.3752          | 0.5495    | 0.5949 | 0.5713 | 0.9455   |
| 0.005         | 16.0  | 2416 | 0.4140          | 0.5823    | 0.5470 | 0.5641 | 0.9455   |
| 0.002         | 17.0  | 2567 | 0.4308          | 0.5555    | 0.5670 | 0.5612 | 0.9438   |
| 0.002         | 18.0  | 2718 | 0.4389          | 0.5594    | 0.5676 | 0.5635 | 0.9436   |
| 0.002         | 19.0  | 2869 | 0.4463          | 0.5609    | 0.5676 | 0.5642 | 0.9444   |
| 0.0007        | 20.0  | 3020 | 0.4512          | 0.5648    | 0.5636 | 0.5642 | 0.9448   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3