Upload folder using huggingface_hub
Browse files- README.md +13 -0
- __init__.py +13 -0
- config.json +38 -0
- configuration_densebackward_olmoe0125.py +25 -0
- generation_config.json +6 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_densebackward_olmoe0125.py +157 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +239 -0
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DenseBackwardOLMoE
|
2 |
+
|
3 |
+
自定义的OLMoE模型,使用DenseBackwardOlmoeSparseMoeBlock替换原版的MoE模块,实现dense backward功能。
|
4 |
+
|
5 |
+
## 用法
|
6 |
+
|
7 |
+
```python
|
8 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
9 |
+
|
10 |
+
# 使用trust_remote_code=True加载模型
|
11 |
+
config = AutoConfig.from_pretrained("autoprogrammer/olmoe_densebackward", trust_remote_code=True)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained("autoprogrammer/olmoe_densebackward", config=config, trust_remote_code=True)
|
13 |
+
```
|
__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 导出自定义配置和模型类
|
2 |
+
from .configuration_densebackward_olmoe0125 import DenseBackwardOLMoEConfig
|
3 |
+
from .modeling_densebackward_olmoe0125 import DenseBackwardOLMoEForCausalLM, DenseBackwardOlmoeSparseMoeBlock
|
4 |
+
|
5 |
+
# 显式注册模型类型
|
6 |
+
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
|
7 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"DenseBackwardOLMoEConfig",
|
11 |
+
"DenseBackwardOLMoEForCausalLM",
|
12 |
+
"DenseBackwardOlmoeSparseMoeBlock"
|
13 |
+
]
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "allenai/OLMoE-1B-7B-0125",
|
3 |
+
"architectures": [
|
4 |
+
"DenseBackwardOLMoEForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_densebackward_olmoe0125.DenseBackwardOLMoEConfig",
|
8 |
+
"AutoModel": "modeling_densebackward_olmoe0125.DenseBackwardOLMoEForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_densebackward_olmoe0125.DenseBackwardOLMoEForCausalLM"
|
10 |
+
},
|
11 |
+
"attention_bias": false,
|
12 |
+
"attention_dropout": 0.0,
|
13 |
+
"clip_qkv": null,
|
14 |
+
"eos_token_id": 50279,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 2048,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 1024,
|
19 |
+
"max_position_embeddings": 4096,
|
20 |
+
"model_type": "olmoe",
|
21 |
+
"norm_topk_prob": false,
|
22 |
+
"num_attention_heads": 16,
|
23 |
+
"num_experts": 64,
|
24 |
+
"num_experts_per_tok": 8,
|
25 |
+
"num_hidden_layers": 16,
|
26 |
+
"num_key_value_heads": 16,
|
27 |
+
"output_router_logits": false,
|
28 |
+
"pad_token_id": 1,
|
29 |
+
"rms_norm_eps": 1e-05,
|
30 |
+
"rope_scaling": null,
|
31 |
+
"rope_theta": 10000.0,
|
32 |
+
"router_aux_loss_coef": 0.01,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "float32",
|
35 |
+
"transformers_version": "4.45.2",
|
36 |
+
"use_cache": true,
|
37 |
+
"vocab_size": 50304
|
38 |
+
}
|
configuration_densebackward_olmoe0125.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# my_custom_olmoe/configuration_custom.py
|
2 |
+
|
3 |
+
# 注意:根据你的 transformers 版本,导入官方 OLMoE 配置的路径可能需要调整
|
4 |
+
from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
|
5 |
+
|
6 |
+
class DenseBackwardOLMoEConfig(OlmoeConfig):
|
7 |
+
model_type = "DenseBackward_olmoe" # 这里覆盖 model_type 字段,便于后续识别
|
8 |
+
|
9 |
+
# 添加auto_map用于支持AutoClass
|
10 |
+
auto_map = {
|
11 |
+
"AutoConfig": "configuration_custom.DenseBackwardOLMoEConfig",
|
12 |
+
"AutoModelForCausalLM": "modeling_custom.DenseBackwardOLMoEForCausalLM"
|
13 |
+
}
|
14 |
+
|
15 |
+
def __init__(self, model_marker="DenseBackward_olmoe_marker", **kwargs):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
self.model_marker = model_marker
|
18 |
+
self.intermediate_size= 1024
|
19 |
+
#test
|
20 |
+
def main():
|
21 |
+
config = DenseBackwardOLMoEConfig(model_marker="DenseBackward_olmoe_marker")
|
22 |
+
print(config)
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
main()
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 50279,
|
4 |
+
"pad_token_id": 1,
|
5 |
+
"transformers_version": "4.45.2"
|
6 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df5a700fa91fd94e9d1a7ae523c5ae055f5879778a02ea19758edd37089da1ca
|
3 |
+
size 4993992240
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f299f21e6de71f5334e937fd51a083bab8cffe55682488219e4082d9558fdba
|
3 |
+
size 4992966080
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4491eb552fd917a6777260f75c88e714f3174fbba7dd69d44b97c4124ddcd56b
|
3 |
+
size 4992966080
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7aeea413752cd17a8e7c343aa436594a8158d279817e4993aa5df4b7c7cfdf22
|
3 |
+
size 4992966416
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18c7f749af753359e10c33a9c5deec688b7155f7c01052937806cd351c52cc38
|
3 |
+
size 4992966680
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:299009ba118f5e918de33573a316ad3d3b9236651986fb1a14dc894f55269e67
|
3 |
+
size 2711184968
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_densebackward_olmoe0125.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# my_custom_olmoe/modeling_custom.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
|
8 |
+
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
|
9 |
+
from .configuration_densebackward_olmoe0125 import DenseBackwardOLMoEConfig
|
10 |
+
|
11 |
+
|
12 |
+
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
|
13 |
+
|
14 |
+
"""
|
15 |
+
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
|
16 |
+
前向输出依旧保持与官方相同(即稀疏计算结果),
|
17 |
+
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
|
18 |
+
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
|
19 |
+
|
20 |
+
输入:
|
21 |
+
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
|
22 |
+
输出:
|
23 |
+
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
|
24 |
+
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
|
25 |
+
"""
|
26 |
+
def forward(self, hidden_states: torch.Tensor):
|
27 |
+
batch_size, seq_length, hidden_dim = hidden_states.shape
|
28 |
+
# 记录输入张量的数据类型,确保所有计算保持一致
|
29 |
+
dtype = hidden_states.dtype
|
30 |
+
device = hidden_states.device
|
31 |
+
|
32 |
+
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
|
33 |
+
N_tokens = flat_hidden.size(0)
|
34 |
+
|
35 |
+
# 计算路由逻辑
|
36 |
+
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
|
37 |
+
# 确保router_logits和flat_hidden数据类型一致
|
38 |
+
router_logits = router_logits.to(dtype=dtype)
|
39 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=dtype) # (B*seq_len, num_experts)
|
40 |
+
|
41 |
+
# 选择top-k专家
|
42 |
+
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
43 |
+
if self.norm_topk_prob:
|
44 |
+
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
|
45 |
+
# 确保归一化后类型一致
|
46 |
+
routing_weights_topk = routing_weights_topk.to(dtype=dtype)
|
47 |
+
|
48 |
+
# ---------- 真实计算所有专家输出(密集计算)----------
|
49 |
+
all_expert_outputs = torch.zeros((N_tokens, self.num_experts, hidden_dim),
|
50 |
+
dtype=dtype, device=device)
|
51 |
+
|
52 |
+
for expert_idx in range(self.num_experts):
|
53 |
+
expert_layer = self.experts[expert_idx]
|
54 |
+
# 对所有token都计算当前专家的输出
|
55 |
+
expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
|
56 |
+
# 计算当前expert的激活mask,只有激活token梯度被保留
|
57 |
+
activation_mask = (selected_experts == expert_idx).any(dim=1).float().unsqueeze(-1).to(dtype)
|
58 |
+
# 注册梯度hook,使得非激活token的梯度被置零
|
59 |
+
if expert_output.requires_grad:
|
60 |
+
expert_output.register_hook(lambda grad, mask=activation_mask: grad * mask)
|
61 |
+
# 确保专家输出与预期类型一致
|
62 |
+
expert_output = expert_output.to(dtype=dtype)
|
63 |
+
all_expert_outputs[:, expert_idx, :] = expert_output
|
64 |
+
|
65 |
+
# ---------- 提取激活专家输出(稀疏前向)- 使用张量批处理 ----------
|
66 |
+
# 创建索引张量,第一维是token索引,第二维是专家索引
|
67 |
+
token_indices = torch.arange(N_tokens, device=device).unsqueeze(1).expand(-1, self.top_k)
|
68 |
+
batch_indices = token_indices.reshape(-1)
|
69 |
+
expert_indices = selected_experts.reshape(-1)
|
70 |
+
|
71 |
+
# 批量提取激活专家的输出
|
72 |
+
selected_outputs = all_expert_outputs[batch_indices, expert_indices].view(N_tokens, self.top_k, hidden_dim)
|
73 |
+
|
74 |
+
# 扩展权重以便批量相乘
|
75 |
+
expanded_weights = routing_weights_topk.unsqueeze(-1) # (N_tokens, top_k, 1)
|
76 |
+
expanded_weights = expanded_weights.to(dtype=dtype)
|
77 |
+
|
78 |
+
# 权重乘以专家输出并求和
|
79 |
+
sparse_output = (selected_outputs * expanded_weights).sum(dim=1) # (N_tokens, hidden_dim)
|
80 |
+
|
81 |
+
# ---------- 密集计算聚合(用于反向传播)----------
|
82 |
+
# 使用所有专家的输出和路由权重计算密集输出
|
83 |
+
routing_weights_expanded = routing_weights.unsqueeze(-1) # (N_tokens, num_experts, 1)
|
84 |
+
routing_weights_expanded = routing_weights_expanded.to(dtype=dtype)
|
85 |
+
dense_outputs = (all_expert_outputs * routing_weights_expanded).sum(dim=1) # (N_tokens, hidden_dim)
|
86 |
+
|
87 |
+
# ---------- 组合稀疏前向和密集反向 ----------
|
88 |
+
# sparse_output.detach()保留稀疏前向计算图
|
89 |
+
# (dense_outputs - dense_outputs.detach())只保留密集反向梯度
|
90 |
+
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
|
91 |
+
final_flat = final_flat.to(dtype=dtype) # 确保最终输出类型一致
|
92 |
+
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
|
93 |
+
|
94 |
+
return final_output, router_logits
|
95 |
+
|
96 |
+
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
|
97 |
+
"""
|
98 |
+
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
|
99 |
+
以实现 dense backward 功能。
|
100 |
+
|
101 |
+
配置类:DenseBackwardOLMoEConfig
|
102 |
+
"""
|
103 |
+
config_class = DenseBackwardOLMoEConfig
|
104 |
+
base_model_prefix = "olmoe"
|
105 |
+
|
106 |
+
def __init__(self, config):
|
107 |
+
# 首先调用父类初始化方法
|
108 |
+
super().__init__(config)
|
109 |
+
|
110 |
+
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
|
111 |
+
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
|
112 |
+
|
113 |
+
# 复制预训练模型的状态到当前模型
|
114 |
+
self.config = pretrained_model.config
|
115 |
+
self.model = pretrained_model.model
|
116 |
+
self.vocab_size = pretrained_model.vocab_size
|
117 |
+
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
|
118 |
+
self.num_experts = pretrained_model.num_experts
|
119 |
+
self.lm_head = pretrained_model.lm_head
|
120 |
+
|
121 |
+
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
|
122 |
+
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
|
123 |
+
# 且每层中 mlp 模块包含属性 sparse_moe_block。
|
124 |
+
for layer in self.model.layers:
|
125 |
+
if hasattr(layer.mlp, "gate"):
|
126 |
+
print("111")
|
127 |
+
orig_block = layer.mlp
|
128 |
+
# 通过直接复制原版属性创建新的块
|
129 |
+
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
|
130 |
+
# 然后手动复制需要共享的属性:
|
131 |
+
new_block.gate = orig_block.gate
|
132 |
+
new_block.experts = orig_block.experts
|
133 |
+
new_block.num_experts = orig_block.num_experts
|
134 |
+
new_block.top_k = orig_block.top_k
|
135 |
+
new_block.norm_topk_prob = orig_block.norm_topk_prob
|
136 |
+
layer.mlp = new_block
|
137 |
+
print(type(layer.mlp))
|
138 |
+
# 释放预训练模型内存
|
139 |
+
del pretrained_model
|
140 |
+
import gc
|
141 |
+
gc.collect()
|
142 |
+
torch.cuda.empty_cache()
|
143 |
+
print("原始预训练模型已释放")
|
144 |
+
|
145 |
+
def main():
|
146 |
+
config = DenseBackwardOLMoEConfig( # 官方模型参数
|
147 |
+
model_marker="DenseBackward_olmoe_marker",
|
148 |
+
)
|
149 |
+
# 创建自定义模型实例
|
150 |
+
model = DenseBackwardOLMoEForCausalLM(config)
|
151 |
+
print(type(model))
|
152 |
+
print(type(model.model))
|
153 |
+
print(type(model.model.layers[0]))
|
154 |
+
print(type(model.model.layers[0].mlp))
|
155 |
+
print(type(model.model.layers[0].mlp.experts))
|
156 |
+
if __name__ == "__main__":
|
157 |
+
main()
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": {
|
10 |
+
"content": "<|padding|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "|||IP_ADDRESS|||",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": false
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
},
|
206 |
+
"50277": {
|
207 |
+
"content": "|||EMAIL_ADDRESS|||",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": true,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": false
|
213 |
+
},
|
214 |
+
"50278": {
|
215 |
+
"content": "|||PHONE_NUMBER|||",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": true,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": false
|
221 |
+
},
|
222 |
+
"50279": {
|
223 |
+
"content": "<|endoftext|>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": false,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": true
|
229 |
+
}
|
230 |
+
},
|
231 |
+
"bos_token": null,
|
232 |
+
"clean_up_tokenization_spaces": true,
|
233 |
+
"eos_token": "<|endoftext|>",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 1000000000000000019884624838656,
|
236 |
+
"pad_token": "<|padding|>",
|
237 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
238 |
+
"unk_token": null
|
239 |
+
}
|