--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - automerger/YamShadow-7B - yam-peleg/Experiment28-7B --- # ๐Ÿงช YamshadowExperiment28-7B YamshadowExperiment28-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [automerger/YamShadow-7B](https://huggingface.co/automerger/YamShadow-7B) * [yam-peleg/Experiment28-7B](https://huggingface.co/yam-peleg/Experiment28-7B) ## ๐Ÿ” Applications This model uses a context window of 8k. I recommend using it with the Alpaca chat template (works perfectly with LM Studio). The model can sometimes break and output a lot of "INST". From my experience, its excellent results on the Open LLM Leaderboard are probably a sign of overfitting. ## โšก Quantized models * **GGUF**: https://huggingface.co/automerger/YamshadowExperiment28-7B-GGUF ## ๐Ÿ† Evaluation ### Open LLM Leaderboard YamshadowExperiment28-7B is currently the best-performing 7B model on the Open LLM Leaderboard (08 Apr 24). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ONmehD2GXYefb-O3zHbp5.png) ### EQ-bench Thanks to [Samuel J. Paech](https://twitter.com/sam_paech), who kindly ran the evaluation. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/e6cg_7TD35JveTjx_KoTT.png) ### Nous Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/s4oKdK3FfaDsagXe7tEM2.png) ## ๐ŸŒณ Model Family Tree ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/fEA4EdtSa_fssdvsUXPf1.png) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: automerger/YamShadow-7B layer_range: [0, 32] - model: yam-peleg/Experiment28-7B layer_range: [0, 32] merge_method: slerp base_model: automerger/YamShadow-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/YamshadowExperiment28-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```