--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: autoevaluate-binary-classification results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8967889908256881 - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: sst2 split: validation metrics: - name: Accuracy type: accuracy value: 0.8967889908256881 verified: true - name: Precision type: precision value: 0.8898678414096917 verified: true - name: Recall type: recall value: 0.9099099099099099 verified: true - name: AUC type: auc value: 0.967247621453229 verified: true - name: F1 type: f1 value: 0.8997772828507795 verified: true - name: loss type: loss value: 0.3009284734725952 verified: true - name: matthews_correlation type: matthews_correlation value: 0.793630584795814 verified: true --- # binary-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3009 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.175 | 1.0 | 4210 | 0.3009 | 0.8968 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1