--- library_name: transformers language: - xh license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - NCHLT_speech_corpus metrics: - wer model-index: - name: facebook mms-1b-all xhosa - Beijuka Bruno results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NCHLT_speech_corpus/Xhosa type: NCHLT_speech_corpus metrics: - name: Wer type: wer value: 0.5971681747855033 --- # facebook mms-1b-all xhosa - Beijuka Bruno This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the NCHLT_speech_corpus/Xhosa dataset. It achieves the following results on the evaluation set: - Loss: 0.3580 - Model Preparation Time: 0.0192 - Wer: 0.5972 - Cer: 0.1361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:----------------------:|:------:|:------:| | 14.2293 | 0.9976 | 316 | 0.2772 | 0.0192 | 0.3588 | 0.0640 | | 1.2546 | 1.9976 | 632 | 0.2685 | 0.0192 | 0.3497 | 0.0616 | | 1.1714 | 2.9976 | 948 | 0.2550 | 0.0192 | 0.3326 | 0.0598 | | 1.1021 | 3.9976 | 1264 | 0.2483 | 0.0192 | 0.3212 | 0.0583 | | 1.0443 | 4.9976 | 1580 | 0.2418 | 0.0192 | 0.3073 | 0.0567 | | 0.9824 | 5.9976 | 1896 | 0.2426 | 0.0192 | 0.3003 | 0.0558 | | 0.959 | 6.9976 | 2212 | 0.2345 | 0.0192 | 0.2895 | 0.0547 | | 0.9257 | 7.9976 | 2528 | 0.2365 | 0.0192 | 0.2988 | 0.0551 | | 0.8916 | 8.9976 | 2844 | 0.2294 | 0.0192 | 0.2862 | 0.0536 | | 0.8608 | 9.9976 | 3160 | 0.2263 | 0.0192 | 0.2864 | 0.0537 | | 0.8313 | 10.9976 | 3476 | 0.2297 | 0.0192 | 0.2817 | 0.0532 | | 0.8067 | 11.9976 | 3792 | 0.2269 | 0.0192 | 0.2796 | 0.0524 | | 0.7644 | 12.9976 | 4108 | 0.2264 | 0.0192 | 0.2703 | 0.0513 | | 0.7608 | 13.9976 | 4424 | 0.2264 | 0.0192 | 0.2737 | 0.0515 | | 0.7311 | 14.9976 | 4740 | 0.2293 | 0.0192 | 0.2703 | 0.0520 | | 0.7109 | 15.9976 | 5056 | 0.2236 | 0.0192 | 0.2712 | 0.0505 | | 0.7245 | 16.9976 | 5372 | 0.2333 | 0.0192 | 0.2760 | 0.0516 | | 0.6952 | 17.9976 | 5688 | 0.2256 | 0.0192 | 0.2623 | 0.0504 | | 0.6798 | 18.9976 | 6004 | 0.2245 | 0.0192 | 0.2650 | 0.0497 | | 0.6525 | 19.9976 | 6320 | 0.2254 | 0.0192 | 0.2669 | 0.0499 | | 0.6366 | 20.9976 | 6636 | 0.2208 | 0.0192 | 0.2627 | 0.0495 | | 0.6263 | 21.9976 | 6952 | 0.2197 | 0.0192 | 0.2600 | 0.0496 | | 0.618 | 22.9976 | 7268 | 0.2227 | 0.0192 | 0.2562 | 0.0491 | | 0.5989 | 23.9976 | 7584 | 0.2228 | 0.0192 | 0.2566 | 0.0496 | | 0.5869 | 24.9976 | 7900 | 0.2278 | 0.0192 | 0.2621 | 0.0496 | | 0.5667 | 25.9976 | 8216 | 0.2260 | 0.0192 | 0.2591 | 0.0498 | | 0.5607 | 26.9976 | 8532 | 0.2242 | 0.0192 | 0.2642 | 0.0503 | | 0.5563 | 27.9976 | 8848 | 0.2235 | 0.0192 | 0.2528 | 0.0488 | | 0.537 | 28.9976 | 9164 | 0.2354 | 0.0192 | 0.2699 | 0.0513 | | 0.53 | 29.9976 | 9480 | 0.2233 | 0.0192 | 0.2541 | 0.0495 | | 0.5143 | 30.9976 | 9796 | 0.2289 | 0.0192 | 0.2524 | 0.0494 | | 0.5118 | 31.9976 | 10112 | 0.2295 | 0.0192 | 0.2596 | 0.0497 | | 0.5041 | 32.9976 | 10428 | 0.2287 | 0.0192 | 0.2547 | 0.0485 | | 0.4918 | 33.9976 | 10744 | 0.2361 | 0.0192 | 0.2536 | 0.0493 | | 0.4825 | 34.9976 | 11060 | 0.2337 | 0.0192 | 0.2562 | 0.0495 | | 0.4758 | 35.9976 | 11376 | 0.2297 | 0.0192 | 0.2496 | 0.0486 | | 0.4525 | 36.9976 | 11692 | 0.2336 | 0.0192 | 0.2501 | 0.0489 | | 0.4564 | 37.9976 | 12008 | 0.2366 | 0.0192 | 0.2602 | 0.0493 | | 0.4555 | 38.9976 | 12324 | 0.2329 | 0.0192 | 0.2515 | 0.0485 | | 0.4471 | 39.9976 | 12640 | 0.2349 | 0.0192 | 0.2505 | 0.0478 | | 0.4324 | 40.9976 | 12956 | 0.2360 | 0.0192 | 0.2526 | 0.0490 | | 0.4219 | 41.9976 | 13272 | 0.2423 | 0.0192 | 0.2541 | 0.0496 | | 0.4172 | 42.9976 | 13588 | 0.2319 | 0.0192 | 0.2448 | 0.0482 | | 0.3976 | 43.9976 | 13904 | 0.2363 | 0.0192 | 0.2460 | 0.0482 | | 0.3991 | 44.9976 | 14220 | 0.2351 | 0.0192 | 0.2663 | 0.0502 | | 0.4055 | 45.9976 | 14536 | 0.2401 | 0.0192 | 0.2507 | 0.0487 | | 0.3889 | 46.9976 | 14852 | 0.2418 | 0.0192 | 0.2496 | 0.0479 | | 0.3931 | 47.9976 | 15168 | 0.2441 | 0.0192 | 0.2475 | 0.0480 | | 0.3651 | 48.9976 | 15484 | 0.2439 | 0.0192 | 0.2549 | 0.0491 | | 0.3707 | 49.9976 | 15800 | 0.2428 | 0.0192 | 0.2511 | 0.0486 | | 0.378 | 50.9976 | 16116 | 0.2371 | 0.0192 | 0.2450 | 0.0479 | | 0.3604 | 51.9976 | 16432 | 0.2462 | 0.0192 | 0.2486 | 0.0483 | | 0.3686 | 52.9976 | 16748 | 0.2457 | 0.0192 | 0.2501 | 0.0484 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0