--- license: other license_name: other license_link: LICENSE --- Model Mixed by [Reborn Merge Method](https://medium.com/@puffanddmx82/reborn-elevating-model-adaptation-with-merging-for-superior-nlp-performance-f604e8e307b2) Keep in mind that the accuracy of your desired questions may vary. Will it be possible to use this merge as a base for future my another merge work? I hope this merge model combines information and grammar appropriately so that it doesn't just give strange, nonsensical answers. Then I can make new cool food with the next merge... ps : What I am saying above is not to say that each model is strange. It means I could be doing the merge wrong. I hope there is no misunderstanding. I am open for the "Collaboration & ETC" if you want ``` Reborn Merge Information [models info] reference_model_name = "MLP-KTLim/llama-3-Korean-Bllossom-8B" base_model_name = "NousResearch/Meta-Llama-3-8B-Instruct" target_model_name = "maum-ai/Llama-3-MAAL-8B-Instruct-v0.1" [interpolation mismatch] Interpolating tensor 'model.embed_tokens.weight' to match the shape: torch.Size([145088, 4096]) vs torch.Size([128256, 4096]) Interpolating tensor 'lm_head.weight' to match the shape: torch.Size([145088, 4096]) vs torch.Size([128256, 4096]) Interpolating tensor 'model.embed_tokens.weight' to match the shape: torch.Size([128256, 4096]) vs torch.Size([128257, 4096]) Interpolating tensor 'lm_head.weight' to match the shape: torch.Size([128256, 4096]) vs torch.Size([128257, 4096]) ``` Ollama Create ``` jaylee@lees-MacBook-Pro-2 % ./ollama create Joah -f ./gguf/Joah-Llama-3-MAAL-MLP-KoEn-8B-Reborn/Modelfile_Q5_K_M transferring model data creating model layer creating template layer creating system layer creating parameters layer creating config layer using already created layer sha256:4eadb53f0c70683aeab133c60d76b8ffc9f41ca5d49524d4b803c19e5ce7e3a5 using already created layer sha256:8ab4849b038cf0abc5b1c9b8ee1443dca6b93a045c2272180d985126eb40bf6f writing layer sha256:ae2974c64ea5d6f488eeb1b10717a270f48fb3452432589db6f5e60472ae96ac writing layer sha256:74ef6315972b317734fe01e7e1ad5b49fce1fa8ed3978cb66501ecb8c3a2e984 writing layer sha256:83882a5e957b8ce0d454f26bcedb2819413b49d6b967b28d60edb8ac61edfa58 writing manifest success ``` MODELFILE ``` FROM joah-llama-3-maal-mlp-koen-8b-reborn-Q5_K_M.gguf TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|> {{ .Response }}<|eot_id|>""" SYSTEM """ 친절한 챗봇으로서 상대방의 요청에 최대한 자세하고 친절하게 답하자. 모든 대답은 한국어(Korean)으로 대답해줘. """ PARAMETER num_keep 24 PARAMETER temperature 0.7 PARAMETER num_predict 3000 PARAMETER stop "<|start_header_id|>" PARAMETER stop "<|end_header_id|>" PARAMETER stop "<|eot_id|>" ``` ## Citation **Language Model** ```text @misc{bllossom, author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim}, title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean}, year = {2024}, journal = {LREC-COLING 2024}, paperLink = {\url{https://arxiv.org/pdf/2403.10882}}, }, } @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ```