File size: 30,396 Bytes
8fe92ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
# apply pos emb to downsampled and upsampled feats
# add bias and scale to blockwise AdaIN params
# subattn to subsampled feat
# block list [4, 16, 4]
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.transformers import SD3Transformer2DModel
from diffusers.configuration_utils import register_to_config
# from diffusers.models.attention import JointTransformerBlock
from diffusers.utils import is_torch_version, logging
from diffusers.models.embeddings import PatchEmbed, get_2d_sincos_pos_embed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
from diffusers.models.normalization import SD35AdaLayerNormZeroX
from diffusers.models.attention import FeedForward, _chunked_feed_forward
from einops import rearrange
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def cropped_pos_embed(pos_embed, height, width, patch_size=1, pos_embed_max_size=96):
"""Crops positional embeddings for SD3 compatibility."""
if pos_embed_max_size is None:
raise ValueError("`pos_embed_max_size` must be set for cropping.")
height = height // patch_size
width = width // patch_size
if height > pos_embed_max_size:
raise ValueError(
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {pos_embed_max_size}."
)
if width > pos_embed_max_size:
raise ValueError(
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {pos_embed_max_size}."
)
top = (pos_embed_max_size - height) // 2
left = (pos_embed_max_size - width) // 2
spatial_pos_embed = pos_embed.reshape(1, pos_embed_max_size, pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
# spatial_pos_embed = torch.permute(spatial_pos_embed, [0, 3, 1, 2])
# spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
return spatial_pos_embed
class JointTransformerBlockSingleNorm(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://huggingface.co/papers/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
context_pre_only: bool = False,
qk_norm: Optional[str] = None,
use_dual_attention: bool = False,
subsample_ratio = 1,
subsample_seq_len = 1,
):
super().__init__()
self.use_dual_attention = use_dual_attention
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_single"
if use_dual_attention:
self.norm1 = SD35AdaLayerNormZeroX(dim)
else:
# self.norm1 = AdaLayerNormZero(dim)
self.norm1 = nn.LayerNorm(dim)
assert subsample_ratio >= 1 and subsample_seq_len >= 1
self.subsample_ratio = subsample_ratio
self.subsample_seq_len = subsample_seq_len
print(self.subsample_ratio, self.subsample_seq_len)
# if context_norm_type == "ada_norm_continous":
# # self.norm1_context = AdaLayerNormContinuous(
# # dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
# # )
# elif context_norm_type == "ada_norm_single":
# # self.norm1_context = AdaLayerNormZero(dim)
# self.norm1_context = nn.LayerNorm(dim)
# else:
# raise ValueError(
# f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
# )
self.norm1_context = nn.LayerNorm(dim)
if hasattr(F, "scaled_dot_product_attention"):
processor = JointAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,
)
if use_dual_attention:
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,
)
else:
self.attn2 = None
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
self.scale_shift_bias = nn.Parameter(torch.randn(6, dim) / dim**0.5)
self.scale_shift_scale = nn.Parameter(torch.randn(6, dim) / dim**0.5)
if not context_pre_only:
self.scale_shift_bias_c = nn.Parameter(torch.randn(6, dim) / dim**0.5)
self.scale_shift_scale_c = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
embedded_timestep: torch.FloatTensor = None,
):
joint_attention_kwargs = joint_attention_kwargs or {}
if self.use_dual_attention:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
hidden_states, emb=temb
)
else:
# norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
batch_size = hidden_states.shape[0]
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_bias[None] + temb.reshape(batch_size, 6, -1)*(1+self.scale_shift_scale[None])
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
# norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, embedded_timestep)
else:
# norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
# encoder_hidden_states, emb=temb
# )
batch_size = hidden_states.shape[0]
c_shift_msa, c_scale_msa, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
self.scale_shift_bias_c[None] + temb.reshape(batch_size, 6, -1)*(1+self.scale_shift_scale_c)
).chunk(6, dim=1)
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_msa) + c_shift_msa
if self.subsample_ratio > 1:
norm_hidden_states = rearrange(norm_hidden_states,
'b (l s n) c -> (b s) (l n) c',
n=self.subsample_seq_len, s=self.subsample_ratio)
norm_encoder_hidden_states = rearrange(norm_encoder_hidden_states,
'b (l s n) c -> (b s) (l n) c',
n=self.subsample_seq_len, s=self.subsample_ratio)
# Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
**joint_attention_kwargs,
)
if self.subsample_ratio > 1:
attn_output = rearrange(attn_output,
'(b s) (l n) c -> b (l s n) c',
n=self.subsample_seq_len, s=self.subsample_ratio)
context_attn_output = rearrange(context_attn_output,
'(b s) (l n) c -> b (l s n) c',
n=self.subsample_seq_len, s=self.subsample_ratio)
# attn_output = norm_hidden_states
# context_attn_output = norm_encoder_hidden_states
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa * attn_output
hidden_states = hidden_states + attn_output
if self.use_dual_attention:
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs)
attn_output2 = gate_msa2 * attn_output2
hidden_states = hidden_states + attn_output2
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa * context_attn_output
# print(context_attn_output.shape, encoder_hidden_states.shape)
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
context_ff_output = _chunked_feed_forward(
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
)
else:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
return encoder_hidden_states, hidden_states
# class TimestepEmbeddings(nn.Module):
# def __init__(self, embedding_dim):
# super().__init__()
# self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
# self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
# def forward(self, timestep, dtype):
# timesteps_proj = self.time_proj(timestep)
# timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D)
# return timesteps_emb
class Downsample(nn.Module):
def __init__(self, n_feat):
super(Downsample, self).__init__()
self.body = nn.Sequential(
nn.PixelUnshuffle(2),
nn.Conv2d(n_feat*4, n_feat, kernel_size=1, stride=1, padding=0, bias=True),
torch.nn.GELU('tanh'),
nn.Conv2d(n_feat, n_feat, kernel_size=1, stride=1, padding=0, bias=True))
def forward(self, x):
return self.body(x)
class Upsample(nn.Module):
def __init__(self, n_feat):
super(Upsample, self).__init__()
self.body = nn.Sequential(nn.PixelShuffle(2),
nn.Conv2d(n_feat//4, n_feat, kernel_size=1, stride=1, padding=0, bias=True),
torch.nn.GELU('tanh'),
nn.Conv2d(n_feat, n_feat, kernel_size=1, stride=1, padding=0, bias=True))
def forward(self, x):
return self.body(x)
class MMDiTTransformer2DModel(SD3Transformer2DModel):
"""
The Transformer model introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
sample_size (`int`): The width of the latent images. This is fixed during training since
it is used to learn a number of position embeddings.
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
out_channels (`int`, defaults to 16): Number of output channels.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 24,
attention_head_dim: int = 32,
num_attention_heads: int = 24,
caption_channels: int = 4096,
caption_projection_dim: int = 768,
out_channels: int = 16,
interpolation_scale: int = None,
pos_embed_max_size: int = 96,
dual_attention_layers: Tuple[
int, ...
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
qk_norm: Optional[str] = None,
repa_depth = -1,
projector_dim=2048,
z_dims=[768]
):
super().__init__(
sample_size=sample_size,
patch_size=patch_size,
in_channels=in_channels,
num_layers=num_layers,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_projection_dim=caption_projection_dim,
out_channels=out_channels,
pos_embed_max_size=pos_embed_max_size,
dual_attention_layers=dual_attention_layers,
qk_norm=qk_norm,
)
self.time_text_embed = None
self.patch_mixer_depth = None # initially no masking applied
self.mask_ratio = 0
# self.block_split_stage = [2, 20, 2]
self.block_split_stage = [4, 16, 4]
# self.block_split_stage = [12, 1, 12]
default_out_channels = in_channels
self.out_channels = out_channels if out_channels is not None else default_out_channels
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
if repa_depth != -1:
from core.models.projector import build_projector
self.projectors = nn.ModuleList([
build_projector(self.inner_dim, projector_dim, z_dim) for z_dim in z_dims
])
assert repa_depth >= 0 and repa_depth < num_layers
self.repa_depth = repa_depth
interpolation_scale = (
self.config.interpolation_scale
if self.config.interpolation_scale is not None
else max(self.config.sample_size // 16, 1)
)
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
interpolation_scale=interpolation_scale,
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
)
pos_embed_lv0 = get_2d_sincos_pos_embed(
self.inner_dim, pos_embed_max_size, base_size=self.config.sample_size // self.config.patch_size,
interpolation_scale=interpolation_scale, output_type='pt'
) # [grid_size**2, embed_dim]
pos_embed_lv0 = cropped_pos_embed(pos_embed_lv0,
self.config.sample_size,
self.config.sample_size,
patch_size=1, pos_embed_max_size=pos_embed_max_size)
pos_embed_lv1 = pos_embed_lv0.clone()[:, ::2, ::2, :]
pos_embed_lv0 = pos_embed_lv0.reshape(1, -1, pos_embed_lv0.shape[-1])
pos_embed_lv1 = pos_embed_lv1.reshape(1, -1, pos_embed_lv1.shape[-1])
self.register_buffer("pos_embed_lv0", pos_embed_lv0.float(), persistent=False)
self.register_buffer("pos_embed_lv1", pos_embed_lv1.float(), persistent=False)
# self.time_text_embed = TimestepEmbeddings(embedding_dim=self.inner_dim)
self.context_embedder = nn.Linear(self.config.caption_channels, self.config.caption_projection_dim)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=False
)
self.transformer_blocks = None
subample_ratio_list = [1, 4, 4]
seq_len_list = [1, 1, 4]
cur_ind = 0
self.block_groups = nn.ModuleList()
for grp_ids, cur_bks in enumerate(self.block_split_stage):
# cur_subample_ratio = 1
# seq_len_list = [1]
# if grp_ids == 1:
# cur_subample_ratio = 4
# seq_len_list = [1, 4]
cur_group = []
for i in range(cur_bks):
cur_group.append(JointTransformerBlockSingleNorm(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
context_pre_only=(grp_ids==len(self.block_split_stage)-1) \
and (i == cur_bks - 1),
qk_norm=qk_norm,
use_dual_attention=False,
subsample_ratio=subample_ratio_list[cur_ind%len(subample_ratio_list)],
subsample_seq_len=seq_len_list[cur_ind%len(seq_len_list)],
))
cur_ind += 1
cur_group = nn.ModuleList(cur_group)
# cur_group = nn.ModuleList(
# [
# JointTransformerBlockSingleNorm(
# dim=self.inner_dim,
# num_attention_heads=self.config.num_attention_heads,
# attention_head_dim=self.config.attention_head_dim,
# context_pre_only=(grp_ids==len(self.block_split_stage)-1) \
# and (i == cur_bks - 1),
# qk_norm=qk_norm,
# use_dual_attention=False,
# subsample_ratio=cur_subample_ratio,
# subsample_seq_len=seq_len_list[i%len(seq_len_list)],
# )
# for i in range(cur_bks)
# ])
self.block_groups.append(cur_group)
ds_num = int(len(self.block_split_stage) // 2)
self.downsamplers = nn.ModuleList()
for _ in range(ds_num):
self.downsamplers.append(Downsample(self.inner_dim))
self.upsamplers = nn.ModuleList()
for _ in range(ds_num):
self.upsamplers.append(Upsample(self.inner_dim))
self.mergers = nn.ModuleList()
for _ in range(ds_num):
# self.mergers.append(nn.Linear(self.inner_dim*2, self.inner_dim))
self.mergers.append(nn.Sequential(
nn.Linear(self.inner_dim*2, self.inner_dim),
torch.nn.GELU('tanh'),
nn.Linear(self.inner_dim, self.inner_dim)))
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
timestep: torch.LongTensor = None,
block_controlnet_hidden_states: List = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
skip_layers: Optional[List[int]] = None,
**kwargs,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`SD3Transformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
timestep (`torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
skip_layers (`list` of `int`, *optional*):
A list of layer indices to skip during the forward pass.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
height, width = hidden_states.shape[-2:]
cur_height = height // self.config.patch_size
cur_width = width // self.config.patch_size
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
# temb = self.time_text_embed(timestep, dtype=encoder_hidden_states.dtype)
temb, embedded_timestep = self.adaln_single(
timestep, None, batch_size=hidden_states.shape[0], hidden_dtype=hidden_states.dtype
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
ids_keep = None
len_keep = hidden_states.shape[1]
zs = None
ds_num = int(len(self.block_split_stage) // 2)
encoder_feats = []
for grp_ids, blocks in enumerate(self.block_groups):
# for encoders
for index_block, block in enumerate(blocks):
# Skip specified layers
is_skip = True if skip_layers is not None and index_block in skip_layers else False
if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
joint_attention_kwargs,
**ckpt_kwargs,
)
elif not is_skip:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
joint_attention_kwargs=joint_attention_kwargs,
)
if grp_ids == 1 and index_block==self.repa_depth-self.block_split_stage[0]-1:
if self.training and (self.repa_depth != -1):
reshaped_out = rearrange(hidden_states, "n (h w) c -> n c h w", h=cur_height, w=cur_width)
upsampled_out = torch.nn.functional.interpolate(reshaped_out, size=(cur_height*2, cur_width*2))
out_1d = rearrange(upsampled_out, "n c h w -> n (h w) c", h=cur_height*2, w=cur_width*2)
zs = [projector(out_1d) for projector in self.projectors]
if grp_ids < ds_num:
encoder_feats.append(hidden_states)
hidden_states = self.downsamplers[grp_ids](rearrange(hidden_states, "n (h w) c -> n c h w", h=cur_height, w=cur_width))
cur_height = int(cur_height / 2)
cur_width = int(cur_width / 2)
hidden_states = rearrange(hidden_states, "n c h w -> n (h w) c", h=cur_height, w=cur_width)
hidden_states = hidden_states + self.pos_embed_lv1
elif grp_ids < len(self.block_split_stage)-1:
hidden_states = self.upsamplers[grp_ids-ds_num](rearrange(hidden_states, "n (h w) c -> n c h w", h=cur_height, w=cur_width))
cur_height = int(cur_height * 2)
cur_width = int(cur_width * 2)
hidden_states = rearrange(hidden_states, "n c h w -> n (h w) c", h=cur_height, w=cur_width)
hidden_states = torch.cat([hidden_states, encoder_feats[len(encoder_feats)-1-(grp_ids-ds_num)]], dim=2)
hidden_states = self.mergers[grp_ids-ds_num](hidden_states)
hidden_states = hidden_states + self.pos_embed_lv0
# print(hidden_states.shape, temb.shape)
hidden_states = self.norm_out(hidden_states)
hidden_states = self.proj_out(hidden_states)
if not self.training:
# unpatchify
patch_size = self.config.patch_size
height = height // patch_size
width = width // patch_size
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
else:
return hidden_states, ids_keep, zs
def enable_masking(self, depth, mask_ratio):
# depth: apply masking after block_[depth]. should be [0, nblks-1]
assert depth >= 0 and depth < len(self.transformer_blocks)
self.patch_mixer_depth = depth
assert mask_ratio >= 0 and mask_ratio <= 1
self.mask_ratio = mask_ratio
def disable_masking(self):
self.patch_mixer_depth = None
def enable_gradient_checkpointing(self, nblocks_to_apply_grad_checkpointing):
N = len(self.transformer_blocks)
if nblocks_to_apply_grad_checkpointing == -1:
nblocks_to_apply_grad_checkpointing = N
nblocks_to_apply_grad_checkpointing = min(N, nblocks_to_apply_grad_checkpointing)
# Apply to blocks evenly spaced out
step = N / nblocks_to_apply_grad_checkpointing if nblocks_to_apply_grad_checkpointing > 0 else 0
indices = [int((i+0.5)*step) for i in range(nblocks_to_apply_grad_checkpointing)]
self.gradient_checkpointing = True
for blk_ind, block in enumerate(self.transformer_blocks):
block.gradient_checkpointing = (blk_ind in indices)
print(f"Block {blk_ind} grad checkpointing set to {block.gradient_checkpointing}") |