Ubuntu
Initial Import.
bd009d9
|
raw
history blame
2.12 kB
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Chinese
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 zh-CN
          type: mozilla-foundation/common_voice_11_0
          config: zh-CN
          split: test
          args: zh-CN
        metrics:
          - name: Wer
            type: wer
            value: 72.36255572065379

Whisper Small Chinese

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 zh-CN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3946
  • Wer: 72.3626

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5179 2.02 1000 0.3333 72.9831
0.1273 4.04 2000 0.3562 73.9621
0.0163 6.06 3000 0.3790 73.9708
0.004 8.07 4000 0.3946 72.3626
0.025 11.0 5000 0.4019 72.6772

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2