--- tags: - CartPole-v1 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 93.12 +/- 14.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing **CartPole-v1** This is a trained model of a **Q-Learning** agent playing **CartPole-v1** . ## Usage ```python model = load_from_hub(repo_id="artbreguez/Q-Cartpole-v1", filename="q-learning.pkl") env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```