--- license: mit base_model: arslanarjumand/wav2vec-reptiles tags: - generated_from_trainer model-index: - name: wav2vec-repeat results: [] --- # wav2vec-repeat This model is a fine-tuned version of [arslanarjumand/wav2vec-reptiles](https://huggingface.co/arslanarjumand/wav2vec-reptiles) on the None dataset. It achieves the following results on the evaluation set: - Loss: 205.9549 - Pcc Accuracy: 0.8004 - Pcc Fluency: 0.7759 - Pcc Total Score: 0.8207 - Pcc Content: 0.7220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pcc Accuracy | Pcc Fluency | Pcc Total Score | Pcc Content | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------:|:---------------:|:-----------:| | 507.295 | 3.54 | 500 | 538.7184 | 0.2592 | 0.2368 | 0.2807 | 0.3206 | | 267.4833 | 7.08 | 1000 | 374.0983 | 0.5787 | 0.5582 | 0.5900 | 0.5040 | | 246.7156 | 10.62 | 1500 | 483.3237 | 0.6618 | 0.6387 | 0.6761 | 0.5837 | | 269.7238 | 14.16 | 2000 | 446.4642 | 0.6964 | 0.6691 | 0.7131 | 0.6288 | | 289.3261 | 17.7 | 2500 | 244.4726 | 0.7201 | 0.6928 | 0.7371 | 0.6482 | | 249.89 | 21.24 | 3000 | 413.8036 | 0.7340 | 0.7052 | 0.7548 | 0.6796 | | 235.8593 | 24.78 | 3500 | 251.3629 | 0.7472 | 0.7217 | 0.7676 | 0.6808 | | 217.7143 | 28.32 | 4000 | 212.4162 | 0.7779 | 0.7547 | 0.7973 | 0.6948 | | 123.7326 | 31.86 | 4500 | 362.4697 | 0.7782 | 0.7528 | 0.7987 | 0.7062 | | 132.7905 | 35.4 | 5000 | 228.9714 | 0.7826 | 0.7603 | 0.8021 | 0.6987 | | 111.7989 | 38.94 | 5500 | 189.2367 | 0.7985 | 0.7754 | 0.8188 | 0.7169 | | 104.5979 | 42.48 | 6000 | 271.8181 | 0.7929 | 0.7692 | 0.8143 | 0.7192 | | 115.256 | 46.02 | 6500 | 220.4324 | 0.8008 | 0.7753 | 0.8209 | 0.7230 | | 86.3804 | 49.56 | 7000 | 205.9549 | 0.8004 | 0.7759 | 0.8207 | 0.7220 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.17.1 - Tokenizers 0.15.2