{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cadecefd680>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690459349290861877, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALYXu750zFE/k3Pyvqootb6vZVA/t05EP1lWOL1x/zG9GCZJv7IE4j9yLsO9SjrJv14guL4+ZV0/A+8mvfKFJr9yl7k+ng6PPrAm/T4jMS0+6pCBPxsypb2YlHE9EcUcv3YVYL+1XTs/3M3IPt9X6D4+Qpu+LvZSPsVE8z6aWmS+pAB7P7IuIT//Jxi//wLYPhBmSr9lO6G869xqvrJO4j+gv2i/eG3Lvw54nz9sLyI8Dapzv2n9zT9zJ4a+tZz4P357Lz+jAyA9W/owvYg7nj8iO5I/OuOuvxIvI8DfV+g+NGVlv2vg4z6ZN2I+NoljPqJ7dD+JfZk+4MkVvmBjJz53ZZS/yQ47P7Kfur6/vT6/+cABvuB/Lj+y/Zc+/mYYvxVArb5K72Y9wScTP3jMxDzPew2+Dfg+vtFlE783qIq/IjuSP7VdOz/czcg+31foPtDBL0DIV4a/XS2MP0C/dr/etOO/T+iiv/+DxL+KDgO/y9XHP2ZCnj87y6q/+71NQJCmtD2j76W/Jt40QLSLnjx9aOU/26SnPhvF7D6kbL3AEvjCP6Eqlj+VTLQ9RoXJQHYVYL86466/Ei8jwGAIDcCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnNiu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkZMyPQAAAACSHfi/AAAAAByYGT0AAAAAZUHePwAAAAAVrMi9AAAAAGPP5j8AAAAAXKqdOwAAAADZWuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxQLZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPaCaD0AAAAA40jnvwAAAACBt528AAAAAMVv7D8AAAAAGpdNvQAAAABJbeg/AAAAAKxGb70AAAAANcz7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHZDbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBrCQ8+AAAAAKnmAMAAAAAAKH4AvQAAAADG4ec/AAAAAFWJXz0AAAAAf+bmPwAAAAC+YJW8AAAAACyS+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAw0G0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAt3JkPQAAAADVmOG/AAAAABswnr0AAAAAX5HmPwAAAADMASs9AAAAABNN/z8AAAAAEYSsvQAAAAAqVfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGcKFrVOKyMAWyUTegDjAF0lEdAqgKC1og3cnV9lChoBkdAk69Xl4keIWgHTegDaAhHQKoEV/lyR0V1fZQoaAZHQJRJSvC/Gl1oB03oA2gIR0CqCQGQKa5PdX2UKGgGR0CU+G0HyEteaAdN6ANoCEdAqgwlNYbKinV9lChoBkdAlGamw7kn1GgHTegDaAhHQKoO46EJ0GN1fZQoaAZHQJLzneoDPnloB03oA2gIR0CqELtTkyULdX2UKGgGR0CS6H0QK8cuaAdN6ANoCEdAqhZMMgEEDHV9lChoBkdAlImNVJcxCmgHTegDaAhHQKobX8k2P1d1fZQoaAZHQI+NOnGbTc9oB03oA2gIR0CqHigeii7DdX2UKGgGR0CSZFuFpPAPaAdN6ANoCEdAqh/9AkcCHXV9lChoBkdAlEjMqBmPHWgHTegDaAhHQKok4HP/rB11fZQoaAZHQJKlb5ftx+9oB03oA2gIR0CqKCeU6gdwdX2UKGgGR0CTcvWmP5pKaAdN6ANoCEdAqirqN6w+uHV9lChoBkdAlUe4t16mf2gHTegDaAhHQKosyeFtbcJ1fZQoaAZHQJS2LlLeyiVoB03oA2gIR0CqMpLs8gZCdX2UKGgGR0CTP2paiblSaAdN6ANoCEdAqjeC9/SYxHV9lChoBkdAlkF8ANoak2gHTegDaAhHQKo6QbrkbP11fZQoaAZHQJViqweNkvtoB03oA2gIR0CqPEELQXyidX2UKGgGR0CUkCQHRkVfaAdN6ANoCEdAqkEM/D+BH3V9lChoBkdAks+SzcAR02gHTegDaAhHQKpERwKBuoB1fZQoaAZHQJMR9qzqrzZoB03oA2gIR0CqRwfEGZ/kdX2UKGgGR0CVjXdH2AXmaAdN6ANoCEdAqkjs+1SflXV9lChoBkdAlEj8zZYgaGgHTegDaAhHQKpPICQtBfN1fZQoaAZHQI9vBSBK+SNoB03oA2gIR0CqU8tZvDP4dX2UKGgGR0CTS9k6tDD1aAdN6ANoCEdAqlaHL9uP3nV9lChoBkdAkYxhWxQizWgHTegDaAhHQKpYZ9/jKgZ1fZQoaAZHQJX+zisGPghoB03oA2gIR0CqXSjl5nlGdX2UKGgGR0CTUcPxQSBcaAdN6ANoCEdAqmBPECNjsnV9lChoBkdAknz6eXiR4mgHTegDaAhHQKpjK7Dl5nl1fZQoaAZHQI6goiJO32FoB03oA2gIR0CqZQGNBF/hdX2UKGgGR0COIv/S6UaAaAdN6ANoCEdAqmteEPDpDHV9lChoBkdAj52RQBPsRmgHTegDaAhHQKpvusS00Fd1fZQoaAZHQJRo1K15Sm9oB03oA2gIR0CqcnN6HCXQdX2UKGgGR0CS63SuyNXHaAdN6ANoCEdAqnRWCXhOxnV9lChoBkdAkXWsA7xNI2gHTegDaAhHQKp5PtAs0551fZQoaAZHQI9O3HR1HONoB03oA2gIR0CqfIRubZvldX2UKGgGR0B84C9h7VriaAdN6ANoCEdAqn9MYqG1yHV9lChoBkdAk4KCG8EmpmgHTegDaAhHQKqBKjL0SRN1fZQoaAZHQHHpxc/t6X1oB03oA2gIR0CqiDWEkB0ZdX2UKGgGR8BKOs3IdU83aAdLYmgIR0Cqij9jG1hLdX2UKGgGR0CS/9tPHktFaAdN6ANoCEdAqow2tnwocHV9lChoBkdAh2kHm7rcCmgHTegDaAhHQKqO/zbN8md1fZQoaAZHQIKBqOJcgQpoB03oA2gIR0CqkOeZ5Rj0dX2UKGgGR0CQw2wX668QaAdN6ANoCEdAqpbqiAUcn3V9lChoBkdAjFWHVG0/nmgHTegDaAhHQKqY2uyNXHR1fZQoaAZHQIK3AGY8dPtoB03oA2gIR0Cqm6e+ueSTdX2UKGgGR0COFPTxXnyNaAdN6ANoCEdAqp2UutfXw3V9lChoBkdAktSrIkqto2gHTegDaAhHQKqme/pMYdh1fZQoaAZHQJNBDPVurIZoB03oA2gIR0CqqGwkona4dX2UKGgGR0CTbwZ2pyZKaAdN6ANoCEdAqqtIPCl7+nV9lChoBkdAhT3Qr1/UfGgHTegDaAhHQKqtGnssxwh1fZQoaAZHQJEVpxS5y2hoB03oA2gIR0CqsxM23rledX2UKGgGR0CVuXuL74zraAdN6ANoCEdAqrUekUKzA3V9lChoBkdAllyLDZUT+WgHTegDaAhHQKq4AoegctJ1fZQoaAZHQJSrmUB4lhRoB03oA2gIR0CqugzURWcSdX2UKGgGR0CNKyFEiMYNaAdN6ANoCEdAqsLNJnQIEHV9lChoBkdAkntZZr56+mgHTegDaAhHQKrEx/sE7nx1fZQoaAZHQJSA7TAnDzloB03oA2gIR0Cqx4/xUedTdX2UKGgGR0CR6nFS88LbaAdN6ANoCEdAqsl57RfF73V9lChoBkdAlOeEkB0ZFWgHTegDaAhHQKrPiIoE0SB1fZQoaAZHQJHF1Rk3CKtoB03oA2gIR0Cq0Yi+De0pdX2UKGgGR0CVMWlnAZbZaAdN6ANoCEdAqtRfK8tf5XV9lChoBkdAlQGngtOEd2gHTegDaAhHQKrW8Pgeii91fZQoaAZHQJV+SG7BfrtoB03oA2gIR0Cq328/lhgFdX2UKGgGR0CSMIUcGTs6aAdN6ANoCEdAquFgI6bONnV9lChoBkdAkm4plSS/02gHTegDaAhHQKrkNOgxrSF1fZQoaAZHQJJGcdjoZAJoB03oA2gIR0Cq5iLTQVsUdX2UKGgGR0CVHDUHpr1vaAdN6ANoCEdAquwuhoM8YHV9lChoBkdAkT1/mLcbi2gHTegDaAhHQKruMOI68xt1fZQoaAZHQJU2yVu76HloB03oA2gIR0Cq8O3DFZPmdX2UKGgGR0CVf+1IAfdRaAdN6ANoCEdAqvPgL/jsEHV9lChoBkdAk8hBqTKT0WgHTegDaAhHQKr7vQ1rIo51fZQoaAZHQJUsB5t3wCtoB03oA2gIR0Cq/bF7tzCDdX2UKGgGR0CTM68/D+BIaAdN6ANoCEdAqwBpLK3d9HV9lChoBkdAlVcMMI/qxGgHTegDaAhHQKsCPsKLKmt1fZQoaAZHQJKSTxDst05oB03oA2gIR0CrCD1zp5eJdX2UKGgGR0CVTQUwztTlaAdN6ANoCEdAqworJIUah3V9lChoBkdAkukRagVXWGgHTegDaAhHQKsNCFh5Pdl1fZQoaAZHQJQzQXqJMxpoB03oA2gIR0CrD/uxrzoVdX2UKGgGR0B5J/0ulGgBaAdN6ANoCEdAqxf7+vQnhXV9lChoBkdAlNjILgGbC2gHTegDaAhHQKsZ+NaQmu11fZQoaAZHQJK8bUMG5c1oB03oA2gIR0CrHMn+6y0KdX2UKGgGR0CUo8zT4L1FaAdN6ANoCEdAqx6pwyZa3nV9lChoBkdAkvaimygPE2gHTegDaAhHQKskofJV81J1fZQoaAZHQI+exQLux8loB03oA2gIR0CrJp35vcagdX2UKGgGR0CWUsDrJKaoaAdN6ANoCEdAqynRFspG4XV9lChoBkdAeEvdDIBBA2gHTegDaAhHQKss1rqt5lh1fZQoaAZHQJcSfcSGrS5oB03oA2gIR0CrNFS+g13udX2UKGgGR0CXbz9Zid8RaAdN6ANoCEdAqzZF1W8yvnV9lChoBkdAlgsVzQu27WgHTegDaAhHQKs5ALJCBwx1fZQoaAZHQJPJq+TNdJJoB03oA2gIR0CrOtx/NJOGdX2UKGgGR0CUjTAi3XqaaAdN6ANoCEdAq0DafJ3gUHV9lChoBkdAlV5Y7FKkEmgHTegDaAhHQKtC0ocaOxV1fZQoaAZHQJM6o580DU5oB03oA2gIR0CrRjM189fUdX2UKGgGR0CWJwjNIK+jaAdN6ANoCEdAq0kgH1OCXnV9lChoBkdAliRZkbxVhmgHTegDaAhHQKtQcp6QeV91fZQoaAZHQJWsVkCmuT1oB03oA2gIR0CrUnN+so2GdX2UKGgGR0CVsUFEiMYNaAdN6ANoCEdAq1VJvegte3V9lChoBkdAl5WATAWSEGgHTegDaAhHQKtXH8IAwPB1fZQoaAZHQJX/IJE6T4doB03oA2gIR0CrXQ51V5rydWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}