--- library_name: transformers language: - en license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer datasets: - arielcerdap/TimeStamped metrics: - wer model-index: - name: Wav2Vec2 TimeStamped Stutter - Ariel Cerda results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: TimeStamped type: arielcerdap/TimeStamped args: 'config: en, split: test' metrics: - name: Wer type: wer value: 0.9991797676008203 --- # Wav2Vec2 TimeStamped Stutter - Ariel Cerda This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the TimeStamped dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 11.5515 | 1.1696 | 100 | 11.9112 | 1.0001 | | 13.4395 | 2.3392 | 200 | 11.9112 | 1.0001 | | 11.9169 | 3.5088 | 300 | 11.9112 | 1.0001 | | 11.1801 | 4.6784 | 400 | 11.9112 | 1.0001 | | 15.3393 | 5.8480 | 500 | 11.9112 | 1.0001 | | 11.8177 | 7.0175 | 600 | 11.9112 | 1.0001 | | 10.7941 | 8.1871 | 700 | 11.9112 | 1.0001 | | 13.8075 | 9.3567 | 800 | 11.9112 | 1.0001 | | 11.5275 | 10.5263 | 900 | 11.9112 | 1.0001 | | 10.1228 | 11.6959 | 1000 | 11.9112 | 1.0001 | | 13.7071 | 12.8655 | 1100 | 11.9112 | 1.0001 | | 11.6933 | 14.0351 | 1200 | 11.9112 | 1.0001 | | 10.885 | 15.2047 | 1300 | 11.9112 | 1.0001 | | 14.2349 | 16.3743 | 1400 | 11.9112 | 1.0001 | | 12.8886 | 17.5439 | 1500 | 11.9112 | 1.0001 | | 0.0 | 18.7135 | 1600 | nan | 0.9992 | | 0.0 | 19.8830 | 1700 | nan | 0.9992 | | 0.0 | 21.0526 | 1800 | nan | 0.9992 | | 0.0 | 22.2222 | 1900 | nan | 0.9992 | | 0.0 | 23.3918 | 2000 | nan | 0.9992 | | 0.0 | 24.5614 | 2100 | nan | 0.9992 | | 0.0 | 25.7310 | 2200 | nan | 0.9992 | | 0.0 | 26.9006 | 2300 | nan | 0.9992 | | 0.0 | 28.0702 | 2400 | nan | 0.9992 | | 0.0 | 29.2398 | 2500 | nan | 0.9992 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1