yevhenkost commited on
Commit
f2dba58
·
verified ·
1 Parent(s): 3f6d966

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md CHANGED
@@ -9,6 +9,41 @@ tags:
9
 
10
  # SentenceTransformer
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
13
 
14
  ## Model Details
 
9
 
10
  # SentenceTransformer
11
 
12
+ Repository with the model for the implementation of WikiCheck API, end-to-end open source Automatic Fact-Checking based on Wikipedia.
13
+
14
+ The research was published in **CIKM2021** applied track:
15
+ - *Trokhymovych, Mykola, and Diego Saez-Trumper.*
16
+ **WikiCheck: An End-to-End Open Source Automatic Fact-Checking API Based on Wikipedia.**
17
+ Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
18
+ Association for Computing Machinery, 2021, pp. 4155–4164, CIKM ’21.
19
+ [![DOI:10.1145/3459637.3481961](https://zenodo.org/badge/DOI/10.1145/3459637.3481961.svg)](https://dl.acm.org/doi/10.1145/3459637.3481961)
20
+
21
+ - The preprint **WikiCheck: An End-to-End Open Source Automatic Fact-Checking API Based on Wikipedia**: [![DOI:10.48550/arXiv.2109.00835](https://zenodo.org/badge/DOI/10.48550/arXiv.2109.00835.svg)](
22
+ https://doi.org/10.48550/arXiv.2109.00835)
23
+
24
+
25
+ Uploaded model from the following [repo](https://github.com/trokhymovych/WikiCheck).
26
+
27
+ Site:
28
+ ```
29
+ @inproceedings{10.1145/3459637.3481961,
30
+ author = {Trokhymovych, Mykola and Saez-Trumper, Diego},
31
+ title = {WikiCheck: An End-to-End Open Source Automatic Fact-Checking API Based on Wikipedia},
32
+ year = {2021},
33
+ isbn = {9781450384469},
34
+ publisher = {Association for Computing Machinery},
35
+ address = {New York, NY, USA},
36
+ url = {https://doi.org/10.1145/3459637.3481961},
37
+ doi = {10.1145/3459637.3481961},
38
+ booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
39
+ pages = {4155–4164},
40
+ numpages = {10},
41
+ keywords = {applied research, nlp, nli, wikipedia, fact-checking},
42
+ location = {Virtual Event, Queensland, Australia},
43
+ series = {CIKM '21}
44
+ }
45
+ ```
46
+
47
  This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
 
49
  ## Model Details