from transformers import PretrainedConfig from typing import Sequence class DMAE1dConfig(PretrainedConfig): model_type = "archinetai/dmae1d-ATC64-v1" def __init__( self, in_channels: int = 2, channels: int = 512, multipliers: Sequence[int] = [3, 2, 1, 1, 1, 1, 1, 1], factors: Sequence[int] = [1, 2, 2, 2, 2, 2, 2], num_blocks: Sequence[int] = [1, 1, 1, 2, 2, 2, 2], attentions: Sequence[int] = [0, 0, 0, 0, 0, 0, 0], encoder_inject_depth: int = 3, encoder_channels: int = 32, encoder_factors: Sequence[int] = [1, 1, 2, 2, 1, 1], encoder_multipliers: Sequence[int] = [32, 16, 8, 8, 4, 2, 1], encoder_num_blocks: Sequence[int] = [4, 4, 4, 4, 4, 4], bottleneck: str = 'tanh', stft_use_complex: bool = True, stft_num_fft: int = 1023, stft_hop_length: int = 256, **kwargs ): self.in_channels = in_channels self.channels = channels self.multipliers = multipliers self.factors = factors self.num_blocks = num_blocks self.attentions = attentions self.encoder_inject_depth = encoder_inject_depth self.encoder_channels = encoder_channels self.encoder_factors = encoder_factors self.encoder_multipliers = encoder_multipliers self.encoder_num_blocks = encoder_num_blocks self.bottleneck = bottleneck self.stft_use_complex = stft_use_complex self.stft_num_fft = stft_num_fft self.stft_hop_length = stft_hop_length super().__init__(**kwargs)