# pip install gradio import gradio as gr import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils import numpy as np # If `RuntimeError: Error(s) in loading state_dict for Generator` error occurs: omit_module = True # Spatial size of training images. All images will be resized to this # size using a transformer. image_size = 64 # Number of channels in the training images. For color images this is 3 nc = 1 # Size of z latent vector (i.e. size of generator input) nz = 100 # Size of feature maps in generator ngf = 64 # Size of feature maps in discriminator ndf = 64 # Learning rate for optimizers lr = 0.0002 # Beta1 hyperparam for Adam optimizers beta1 = 0.5 # Number of GPUs available. Use 0 for CPU mode. ngpu = 1 device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) class Generator(nn.Module): def __init__(self, ngpu): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), # state size. (ngf) x 32 x 32 nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False), nn.Tanh() # state size. (nc) x 64 x 64 ) def forward(self, input): return self.main(input) # Create the generator netG = Generator(ngpu).to(device) # Handle multi-gpu if desired if (device.type == 'cuda') and (ngpu > 1): netG = nn.DataParallel(netG, list(range(ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.02. netG.apply(weights_init) checkpoint = torch.load("checkpoints/epoch1100.ckpt") if omit_module: for i in list(checkpoint['netG_state_dict'].keys()): if (str(i).startswith('module.')): checkpoint['netG_state_dict'][i[7:]] = checkpoint['netG_state_dict'].pop(i) netG.load_state_dict(checkpoint['netG_state_dict']) def genImg(): fixed_noise = torch.randn(64, nz, 1, 1, device=device) with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() fake_grid = vutils.make_grid(fake, padding=2, normalize=True) return transforms.functional.to_pil_image(fake_grid) demo = gr.Interface(fn=genImg, inputs=None, outputs="image") demo.launch()