--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 280.22 +/- 13.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python from stable_baselines3 import DQN from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.callbacks import EvalCallback # Create the environment env_id = "LunarLander-v2" n_envs = 1 env = make_vec_env(env_id, n_envs=n_envs) # Create the evaluation envs eval_envs = make_vec_env(env_id, n_envs=5) # Adjust evaluation interval depending on the number of envs eval_freq = int(1e5) eval_freq = max(eval_freq // n_envs, 1) # Create evaluation callback to save best model # and monitor agent performance eval_callback = EvalCallback( eval_envs, best_model_save_path="./logs/", eval_freq=eval_freq, n_eval_episodes=10, ) # Instantiate the agent # Hyperparameters from https://github.com/DLR-RM/rl-baselines3-zoo model = DQN( "MlpPolicy", env, learning_starts=0, batch_size=128, buffer_size=50000, learning_rate=1e-3, target_update_interval=250, train_freq=4, gradient_steps=-1, # Explore for 20_000 timesteps exploration_fraction=0.04, exploration_final_eps=0.1, policy_kwargs=dict(net_arch=[256, 256]), verbose=1, ) # Train the agent (you can kill it before using ctrl+c) try: model.learn(total_timesteps=int(5e5), callback=eval_callback) except KeyboardInterrupt: pass # Load best model model = DQN.load("logs/best_model.zip") ```