--- library_name: transformers license: mit base_model: facebook/esm2_t33_650M_UR50D tags: - generated_from_trainer metrics: - accuracy model-index: - name: esm2_t33_650M_UR50D_56706470 results: [] --- # esm2_t33_650M_UR50D_56706470 This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5745 - Accuracy: 0.8692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 147 | 0.3648 | 0.8410 | | No log | 2.0 | 294 | 0.3967 | 0.8436 | | No log | 3.0 | 441 | 0.5136 | 0.8615 | | 0.2299 | 4.0 | 588 | 0.5463 | 0.8615 | | 0.2299 | 5.0 | 735 | 0.5745 | 0.8692 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1.post103 - Datasets 3.1.0 - Tokenizers 0.20.4