import numpy as np import torch from TTS.vocoder.models.parallel_wavegan_discriminator import ParallelWaveganDiscriminator, ResidualParallelWaveganDiscriminator def test_pwgan_disciminator(): model = ParallelWaveganDiscriminator( in_channels=1, out_channels=1, kernel_size=3, num_layers=10, conv_channels=64, dilation_factor=1, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, bias=True) dummy_x = torch.rand((4, 1, 64 * 256)) output = model(dummy_x) assert np.all(output.shape == (4, 1, 64 * 256)) model.remove_weight_norm() def test_redisual_pwgan_disciminator(): model = ResidualParallelWaveganDiscriminator( in_channels=1, out_channels=1, kernel_size=3, num_layers=30, stacks=3, res_channels=64, gate_channels=128, skip_channels=64, dropout=0.0, bias=True, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}) dummy_x = torch.rand((4, 1, 64 * 256)) output = model(dummy_x) assert np.all(output.shape == (4, 1, 64 * 256)) model.remove_weight_norm()