import os import numpy as np from tests import get_tests_path, get_tests_input_path, get_tests_output_path from torch.utils.data import DataLoader from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config from TTS.vocoder.datasets.gan_dataset import GANDataset from TTS.vocoder.datasets.preprocess import load_wav_data file_path = os.path.dirname(os.path.realpath(__file__)) OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") os.makedirs(OUTPATH, exist_ok=True) C = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) test_data_path = os.path.join(get_tests_path(), "data/ljspeech/") ok_ljspeech = os.path.exists(test_data_path) def gan_dataset_case(batch_size, seq_len, hop_len, conv_pad, return_segments, use_noise_augment, use_cache, num_workers): ''' run dataloader with given parameters and check conditions ''' ap = AudioProcessor(**C.audio) _, train_items = load_wav_data(test_data_path, 10) dataset = GANDataset(ap, train_items, seq_len=seq_len, hop_len=hop_len, pad_short=2000, conv_pad=conv_pad, return_segments=return_segments, use_noise_augment=use_noise_augment, use_cache=use_cache) loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) max_iter = 10 count_iter = 0 # return random segments or return the whole audio if return_segments: for item1, _ in loader: feat1, wav1 = item1 # feat2, wav2 = item2 expected_feat_shape = (batch_size, ap.num_mels, seq_len // hop_len + conv_pad * 2) # check shapes assert np.all(feat1.shape == expected_feat_shape), f" [!] {feat1.shape} vs {expected_feat_shape}" assert (feat1.shape[2] - conv_pad * 2) * hop_len == wav1.shape[2] # check feature vs audio match if not use_noise_augment: for idx in range(batch_size): audio = wav1[idx].squeeze() feat = feat1[idx] mel = ap.melspectrogram(audio) # the first 2 and the last 2 frames are skipped due to the padding # differences in stft assert (feat - mel[:, :feat1.shape[-1]])[:, 2:-2].sum() <= 0, f' [!] {(feat - mel[:, :feat1.shape[-1]])[:, 2:-2].sum()}' count_iter += 1 # if count_iter == max_iter: # break else: for item in loader: feat, wav = item expected_feat_shape = (batch_size, ap.num_mels, (wav.shape[-1] // hop_len) + (conv_pad * 2)) assert np.all(feat.shape == expected_feat_shape), f" [!] {feat.shape} vs {expected_feat_shape}" assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2] count_iter += 1 if count_iter == max_iter: break def test_parametrized_gan_dataset(): ''' test dataloader with different parameters ''' params = [ [32, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, False, True, 0], [32, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, False, True, 4], [1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, True, True, 0], [1, C.audio['hop_length'], C.audio['hop_length'], 0, True, True, True, 0], [1, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, True, True, True, 0], [1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, False, True, True, 0], [1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, False, True, 0], [1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, True, True, False, 0], [1, C.audio['hop_length'] * 10, C.audio['hop_length'], 0, False, False, False, 0], ] for param in params: print(param) gan_dataset_case(*param)