import copy import os import unittest import torch from tests import get_tests_input_path from torch import nn, optim from TTS.tts.layers.losses import MSELossMasked from TTS.tts.models.tacotron2 import Tacotron2 from TTS.utils.io import load_config from TTS.utils.audio import AudioProcessor #pylint: disable=unused-variable torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") c = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) ap = AudioProcessor(**c.audio) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") class TacotronTrainTest(unittest.TestCase): def test_train_step(self): # pylint: disable=no-self-use input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8, )).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) mel_lengths[0] = 30 stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = MSELossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron2(num_chars=24, r=c.r, num_speakers=5).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, mel_postnet_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) assert torch.sigmoid(stop_tokens).data.max() <= 1.0 assert torch.sigmoid(stop_tokens).data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1 class MultiSpeakeTacotronTrainTest(unittest.TestCase): @staticmethod def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8, )).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) mel_lengths[0] = 30 stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_embeddings = torch.rand(8, 55).to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = MSELossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, speaker_embedding_dim=55).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, mel_postnet_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_embeddings=speaker_embeddings) assert torch.sigmoid(stop_tokens).data.max() <= 1.0 assert torch.sigmoid(stop_tokens).data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1 class TacotronGSTTrainTest(unittest.TestCase): #pylint: disable=no-self-use def test_train_step(self): # with random gst mel style input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8, )).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) mel_lengths[0] = 30 stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = MSELossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens']).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(10): mel_out, mel_postnet_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) assert torch.sigmoid(stop_tokens).data.max() <= 1.0 assert torch.sigmoid(stop_tokens).data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: name, param = name_param if name == 'gst_layer.encoder.recurrence.weight_hh_l0': #print(param.grad) continue assert (param != param_ref).any( ), "param {} {} with shape {} not updated!! \n{}\n{}".format( name, count, param.shape, param, param_ref) count += 1 # with file gst style mel_spec = torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :30].unsqueeze(0).transpose(1, 2).to(device) mel_spec = mel_spec.repeat(8, 1, 1) input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8, )).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) mel_lengths[0] = 30 stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = MSELossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens']).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(10): mel_out, mel_postnet_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids) assert torch.sigmoid(stop_tokens).data.max() <= 1.0 assert torch.sigmoid(stop_tokens).data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: name, param = name_param if name == 'gst_layer.encoder.recurrence.weight_hh_l0': #print(param.grad) continue assert (param != param_ref).any( ), "param {} {} with shape {} not updated!! \n{}\n{}".format( name, count, param.shape, param, param_ref) count += 1 class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): @staticmethod def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 128, (8, )).long().to(device) input_lengths = torch.sort(input_lengths, descending=True)[0] mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) mel_lengths[0] = 30 stop_targets = torch.zeros(8, 30, 1).float().to(device) speaker_embeddings = torch.rand(8, 55).to(device) for idx in mel_lengths: stop_targets[:, int(idx.item()):, 0] = 1.0 stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // c.r, -1) stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() criterion = MSELossMasked(seq_len_norm=False).to(device) criterion_st = nn.BCEWithLogitsLoss().to(device) model = Tacotron2(num_chars=24, r=c.r, num_speakers=5, speaker_embedding_dim=55, gst=True, gst_embedding_dim=c.gst['gst_embedding_dim'], gst_num_heads=c.gst['gst_num_heads'], gst_style_tokens=c.gst['gst_style_tokens'], gst_use_speaker_embedding=c.gst['gst_use_speaker_embedding']).to(device) model.train() model_ref = copy.deepcopy(model) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=c.lr) for i in range(5): mel_out, mel_postnet_out, align, stop_tokens = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, speaker_embeddings=speaker_embeddings) assert torch.sigmoid(stop_tokens).data.max() <= 1.0 assert torch.sigmoid(stop_tokens).data.min() >= 0.0 optimizer.zero_grad() loss = criterion(mel_out, mel_spec, mel_lengths) stop_loss = criterion_st(stop_tokens, stop_targets) loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss loss.backward() optimizer.step() # check parameter changes count = 0 for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): # ignore pre-higway layer since it works conditional # if count not in [145, 59]: name, param = name_param if name == 'gst_layer.encoder.recurrence.weight_hh_l0': continue assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1