{ "run_name": "multiband-melgan-rwd", "run_description": "multiband melgan with random window discriminator from https://arxiv.org/pdf/1909.11646.pdf", // AUDIO PARAMETERS "audio":{ // stft parameters "num_freq": 513, // number of stft frequency levels. Size of the linear spectogram frame. "win_length": 1024, // stft window length in ms. "hop_length": 256, // stft window hop-lengh in ms. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. // Audio processing parameters "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. // Silence trimming "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) "trim_db": 60, // threshold for timming silence. Set this according to your dataset. // Griffin-Lim "power": 1.5, // value to sharpen wav signals after GL algorithm. "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // MelSpectrogram parameters "num_mels": 80, // size of the mel spec frame. "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! // Normalization parameters "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. "min_level_db": -100, // lower bound for normalization "symmetric_norm": true, // move normalization to range [-1, 1] "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored }, // DISTRIBUTED TRAINING // "distributed":{ // "backend": "nccl", // "url": "tcp:\/\/localhost:54321" // }, // MODEL PARAMETERS "use_pqmf": true, // LOSS PARAMETERS "use_stft_loss": true, "use_subband_stft_loss": true, "use_mse_gan_loss": true, "use_hinge_gan_loss": false, "use_feat_match_loss": false, // use only with melgan discriminators // loss weights "stft_loss_weight": 0.5, "subband_stft_loss_weight": 0.5, "mse_G_loss_weight": 2.5, "hinge_G_loss_weight": 2.5, "feat_match_loss_weight": 25, // multiscale stft loss parameters "stft_loss_params": { "n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240] }, // subband multiscale stft loss parameters "subband_stft_loss_params":{ "n_ffts": [384, 683, 171], "hop_lengths": [30, 60, 10], "win_lengths": [150, 300, 60] }, "target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch // DISCRIMINATOR "discriminator_model": "random_window_discriminator", "discriminator_model_params":{ "uncond_disc_donwsample_factors": [8, 4], "cond_disc_downsample_factors": [[8, 4, 2, 2, 2], [8, 4, 2, 2], [8, 4, 2], [8, 4], [4, 2, 2]], "cond_disc_out_channels": [[128, 128, 256, 256], [128, 256, 256], [128, 256], [256], [128, 256]], "window_sizes": [512, 1024, 2048, 4096, 8192] }, "steps_to_start_discriminator": 200000, // steps required to start GAN trainining.1 // GENERATOR "generator_model": "multiband_melgan_generator", "generator_model_params": { "upsample_factors":[8, 4, 2], "num_res_blocks": 4 }, // DATASET "data_path": "/home/erogol/Data/LJSpeech-1.1/wavs/", "seq_len": 16384, "pad_short": 2000, "conv_pad": 0, "use_noise_augment": false, "use_cache": true, "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. // TRAINING "batch_size": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. // VALIDATION "run_eval": true, "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. // OPTIMIZER "noam_schedule": false, // use noam warmup and lr schedule. "warmup_steps_gen": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" "warmup_steps_disc": 4000, "epochs": 10000, // total number of epochs to train. "wd": 0.0, // Weight decay weight. "gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0 "disc_clip_grad": -1, // Discriminator gradient clipping threshold. "lr_scheduler_gen": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate "lr_scheduler_gen_params": { "gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000] }, "lr_scheduler_disc": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate "lr_scheduler_disc_params": { "gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000] }, "lr_gen": 1e-4, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_disc": 1e-4, // TENSORBOARD and LOGGING "print_step": 25, // Number of steps to log traning on console. "print_eval": false, // If True, it prints loss values for each step in eval run. "save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints. "checkpoint": true, // If true, it saves checkpoints per "save_step" "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. // DATA LOADING "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes. "eval_split_size": 10, // PATHS "output_path": "/home/erogol/Models/LJSpeech/" }