import librosa import soundfile as sf import numpy as np import scipy.io.wavfile import scipy.signal # import pyworld as pw from TTS.tts.utils.data import StandardScaler #pylint: disable=too-many-public-methods class AudioProcessor(object): def __init__(self, sample_rate=None, resample=False, num_mels=None, min_level_db=None, frame_shift_ms=None, frame_length_ms=None, hop_length=None, win_length=None, ref_level_db=None, fft_size=1024, power=None, preemphasis=0.0, signal_norm=None, symmetric_norm=None, max_norm=None, mel_fmin=None, mel_fmax=None, spec_gain=20, stft_pad_mode='reflect', clip_norm=True, griffin_lim_iters=None, do_trim_silence=False, trim_db=60, do_sound_norm=False, stats_path=None, verbose=True, **_): # setup class attributed self.sample_rate = sample_rate self.resample = resample self.num_mels = num_mels self.min_level_db = min_level_db or 0 self.frame_shift_ms = frame_shift_ms self.frame_length_ms = frame_length_ms self.ref_level_db = ref_level_db self.fft_size = fft_size self.power = power self.preemphasis = preemphasis self.griffin_lim_iters = griffin_lim_iters self.signal_norm = signal_norm self.symmetric_norm = symmetric_norm self.mel_fmin = mel_fmin or 0 self.mel_fmax = mel_fmax self.spec_gain = float(spec_gain) self.stft_pad_mode = stft_pad_mode self.max_norm = 1.0 if max_norm is None else float(max_norm) self.clip_norm = clip_norm self.do_trim_silence = do_trim_silence self.trim_db = trim_db self.do_sound_norm = do_sound_norm self.stats_path = stats_path # setup stft parameters if hop_length is None: # compute stft parameters from given time values self.hop_length, self.win_length = self._stft_parameters() else: # use stft parameters from config file self.hop_length = hop_length self.win_length = win_length assert min_level_db != 0.0, " [!] min_level_db is 0" assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size" members = vars(self) if verbose: print(" > Setting up Audio Processor...") for key, value in members.items(): print(" | > {}:{}".format(key, value)) # create spectrogram utils self.mel_basis = self._build_mel_basis() self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis()) # setup scaler if stats_path: mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path) self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) self.signal_norm = True self.max_norm = None self.clip_norm = None self.symmetric_norm = None ### setting up the parameters ### def _build_mel_basis(self, ): if self.mel_fmax is not None: assert self.mel_fmax <= self.sample_rate // 2 return librosa.filters.mel( self.sample_rate, self.fft_size, n_mels=self.num_mels, fmin=self.mel_fmin, fmax=self.mel_fmax) def _stft_parameters(self, ): """Compute necessary stft parameters with given time values""" factor = self.frame_length_ms / self.frame_shift_ms assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate) win_length = int(hop_length * factor) return hop_length, win_length ### normalization ### def normalize(self, S): """Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]""" #pylint: disable=no-else-return S = S.copy() if self.signal_norm: # mean-var scaling if hasattr(self, 'mel_scaler'): if S.shape[0] == self.num_mels: return self.mel_scaler.transform(S.T).T elif S.shape[0] == self.fft_size / 2: return self.linear_scaler.transform(S.T).T else: raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.') # range normalization S -= self.ref_level_db # discard certain range of DB assuming it is air noise S_norm = ((S - self.min_level_db) / (-self.min_level_db)) if self.symmetric_norm: S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm if self.clip_norm: S_norm = np.clip(S_norm, -self.max_norm, self.max_norm) # pylint: disable=invalid-unary-operand-type return S_norm else: S_norm = self.max_norm * S_norm if self.clip_norm: S_norm = np.clip(S_norm, 0, self.max_norm) return S_norm else: return S def denormalize(self, S): """denormalize values""" #pylint: disable=no-else-return S_denorm = S.copy() if self.signal_norm: # mean-var scaling if hasattr(self, 'mel_scaler'): if S_denorm.shape[0] == self.num_mels: return self.mel_scaler.inverse_transform(S_denorm.T).T elif S_denorm.shape[0] == self.fft_size / 2: return self.linear_scaler.inverse_transform(S_denorm.T).T else: raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.') if self.symmetric_norm: if self.clip_norm: S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm) #pylint: disable=invalid-unary-operand-type S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db return S_denorm + self.ref_level_db else: if self.clip_norm: S_denorm = np.clip(S_denorm, 0, self.max_norm) S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db return S_denorm + self.ref_level_db else: return S_denorm ### Mean-STD scaling ### def load_stats(self, stats_path): stats = np.load(stats_path, allow_pickle=True).item() #pylint: disable=unexpected-keyword-arg mel_mean = stats['mel_mean'] mel_std = stats['mel_std'] linear_mean = stats['linear_mean'] linear_std = stats['linear_std'] stats_config = stats['audio_config'] # check all audio parameters used for computing stats skip_parameters = ['griffin_lim_iters', 'stats_path', 'do_trim_silence', 'ref_level_db', 'power'] for key in stats_config.keys(): if key in skip_parameters: continue if key not in ['sample_rate', 'trim_db']: assert stats_config[key] == self.__dict__[key],\ f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}" return mel_mean, mel_std, linear_mean, linear_std, stats_config # pylint: disable=attribute-defined-outside-init def setup_scaler(self, mel_mean, mel_std, linear_mean, linear_std): self.mel_scaler = StandardScaler() self.mel_scaler.set_stats(mel_mean, mel_std) self.linear_scaler = StandardScaler() self.linear_scaler.set_stats(linear_mean, linear_std) ### DB and AMP conversion ### # pylint: disable=no-self-use def _amp_to_db(self, x): return self.spec_gain * np.log10(np.maximum(1e-5, x)) # pylint: disable=no-self-use def _db_to_amp(self, x): return np.power(10.0, x / self.spec_gain) ### Preemphasis ### def apply_preemphasis(self, x): if self.preemphasis == 0: raise RuntimeError(" [!] Preemphasis is set 0.0.") return scipy.signal.lfilter([1, -self.preemphasis], [1], x) def apply_inv_preemphasis(self, x): if self.preemphasis == 0: raise RuntimeError(" [!] Preemphasis is set 0.0.") return scipy.signal.lfilter([1], [1, -self.preemphasis], x) ### SPECTROGRAMs ### def _linear_to_mel(self, spectrogram): return np.dot(self.mel_basis, spectrogram) def _mel_to_linear(self, mel_spec): return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec)) def spectrogram(self, y): if self.preemphasis != 0: D = self._stft(self.apply_preemphasis(y)) else: D = self._stft(y) S = self._amp_to_db(np.abs(D)) return self.normalize(S) def melspectrogram(self, y): if self.preemphasis != 0: D = self._stft(self.apply_preemphasis(y)) else: D = self._stft(y) S = self._amp_to_db(self._linear_to_mel(np.abs(D))) return self.normalize(S) def inv_spectrogram(self, spectrogram): """Converts spectrogram to waveform using librosa""" S = self.denormalize(spectrogram) S = self._db_to_amp(S) # Reconstruct phase if self.preemphasis != 0: return self.apply_inv_preemphasis(self._griffin_lim(S**self.power)) return self._griffin_lim(S**self.power) def inv_melspectrogram(self, mel_spectrogram): '''Converts melspectrogram to waveform using librosa''' D = self.denormalize(mel_spectrogram) S = self._db_to_amp(D) S = self._mel_to_linear(S) # Convert back to linear if self.preemphasis != 0: return self.apply_inv_preemphasis(self._griffin_lim(S**self.power)) return self._griffin_lim(S**self.power) def out_linear_to_mel(self, linear_spec): S = self.denormalize(linear_spec) S = self._db_to_amp(S) S = self._linear_to_mel(np.abs(S)) S = self._amp_to_db(S) mel = self.normalize(S) return mel ### STFT and ISTFT ### def _stft(self, y): return librosa.stft( y=y, n_fft=self.fft_size, hop_length=self.hop_length, win_length=self.win_length, pad_mode=self.stft_pad_mode, ) def _istft(self, y): return librosa.istft( y, hop_length=self.hop_length, win_length=self.win_length) def _griffin_lim(self, S): angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = self._istft(S_complex * angles) for _ in range(self.griffin_lim_iters): angles = np.exp(1j * np.angle(self._stft(y))) y = self._istft(S_complex * angles) return y def compute_stft_paddings(self, x, pad_sides=1): '''compute right padding (final frame) or both sides padding (first and final frames) ''' assert pad_sides in (1, 2) pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0] if pad_sides == 1: return 0, pad return pad // 2, pad // 2 + pad % 2 ### Compute F0 ### # def compute_f0(self, x): # f0, t = pw.dio( # x.astype(np.double), # fs=self.sample_rate, # f0_ceil=self.mel_fmax, # frame_period=1000 * self.hop_length / self.sample_rate, # ) # f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate) # return f0 ### Audio Processing ### def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8): window_length = int(self.sample_rate * min_silence_sec) hop_length = int(window_length / 4) threshold = self._db_to_amp(threshold_db) for x in range(hop_length, len(wav) - window_length, hop_length): if np.max(wav[x:x + window_length]) < threshold: return x + hop_length return len(wav) def trim_silence(self, wav): """ Trim silent parts with a threshold and 0.01 sec margin """ margin = int(self.sample_rate * 0.01) wav = wav[margin:-margin] return librosa.effects.trim( wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0] @staticmethod def sound_norm(x): return x / abs(x).max() * 0.9 ### save and load ### def load_wav(self, filename, sr=None): if self.resample: x, sr = librosa.load(filename, sr=self.sample_rate) elif sr is None: x, sr = sf.read(filename) assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr) else: x, sr = librosa.load(filename, sr=sr) if self.do_trim_silence: try: x = self.trim_silence(x) except ValueError: print(f' [!] File cannot be trimmed for silence - {filename}') if self.do_sound_norm: x = self.sound_norm(x) return x def save_wav(self, wav, path): wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16)) @staticmethod def mulaw_encode(wav, qc): mu = 2 ** qc - 1 # wav_abs = np.minimum(np.abs(wav), 1.0) signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu) # Quantize signal to the specified number of levels. signal = (signal + 1) / 2 * mu + 0.5 return np.floor(signal,) @staticmethod def mulaw_decode(wav, qc): """Recovers waveform from quantized values.""" mu = 2 ** qc - 1 x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) return x @staticmethod def encode_16bits(x): return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16) @staticmethod def quantize(x, bits): return (x + 1.) * (2**bits - 1) / 2 @staticmethod def dequantize(x, bits): return 2 * x / (2**bits - 1) - 1