import librosa import matplotlib import numpy as np import torch matplotlib.use('Agg') import matplotlib.pyplot as plt from TTS.tts.utils.text import phoneme_to_sequence, sequence_to_phoneme def plot_alignment(alignment, info=None, fig_size=(16, 10), title=None, output_fig=False): if isinstance(alignment, torch.Tensor): alignment_ = alignment.detach().cpu().numpy().squeeze() else: alignment_ = alignment alignment_ = alignment_.astype( np.float32) if alignment_.dtype == np.float16 else alignment_ fig, ax = plt.subplots(figsize=fig_size) im = ax.imshow(alignment_.T, aspect='auto', origin='lower', interpolation='none') fig.colorbar(im, ax=ax) xlabel = 'Decoder timestep' if info is not None: xlabel += '\n\n' + info plt.xlabel(xlabel) plt.ylabel('Encoder timestep') # plt.yticks(range(len(text)), list(text)) plt.tight_layout() if title is not None: plt.title(title) if not output_fig: plt.close() return fig def plot_spectrogram(spectrogram, ap=None, fig_size=(16, 10), output_fig=False): if isinstance(spectrogram, torch.Tensor): spectrogram_ = spectrogram.detach().cpu().numpy().squeeze().T else: spectrogram_ = spectrogram.T spectrogram_ = spectrogram_.astype( np.float32) if spectrogram_.dtype == np.float16 else spectrogram_ if ap is not None: spectrogram_ = ap.denormalize(spectrogram_) # pylint: disable=protected-access fig = plt.figure(figsize=fig_size) plt.imshow(spectrogram_, aspect="auto", origin="lower") plt.colorbar() plt.tight_layout() if not output_fig: plt.close() return fig def visualize(alignment, postnet_output, text, hop_length, CONFIG, stop_tokens=None, decoder_output=None, output_path=None, figsize=(8, 24), output_fig=False): if decoder_output is not None: num_plot = 4 else: num_plot = 3 label_fontsize = 16 fig = plt.figure(figsize=figsize) plt.subplot(num_plot, 1, 1) plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None) plt.xlabel("Decoder timestamp", fontsize=label_fontsize) plt.ylabel("Encoder timestamp", fontsize=label_fontsize) # compute phoneme representation and back if CONFIG.use_phonemes: seq = phoneme_to_sequence( text, [CONFIG.text_cleaner], CONFIG.phoneme_language, CONFIG.enable_eos_bos_chars, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None) text = sequence_to_phoneme( seq, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None) print(text) plt.yticks(range(len(text)), list(text)) plt.colorbar() if stop_tokens is not None: # plot stopnet predictions plt.subplot(num_plot, 1, 2) plt.plot(range(len(stop_tokens)), list(stop_tokens)) # plot postnet spectrogram plt.subplot(num_plot, 1, 3) librosa.display.specshow(postnet_output.T, sr=CONFIG.audio['sample_rate'], hop_length=hop_length, x_axis="time", y_axis="linear", fmin=CONFIG.audio['mel_fmin'], fmax=CONFIG.audio['mel_fmax']) plt.xlabel("Time", fontsize=label_fontsize) plt.ylabel("Hz", fontsize=label_fontsize) plt.tight_layout() plt.colorbar() if decoder_output is not None: plt.subplot(num_plot, 1, 4) librosa.display.specshow(decoder_output.T, sr=CONFIG.audio['sample_rate'], hop_length=hop_length, x_axis="time", y_axis="linear", fmin=CONFIG.audio['mel_fmin'], fmax=CONFIG.audio['mel_fmax']) plt.xlabel("Time", fontsize=label_fontsize) plt.ylabel("Hz", fontsize=label_fontsize) plt.tight_layout() plt.colorbar() if output_path: print(output_path) fig.savefig(output_path) plt.close() if not output_fig: plt.close()