import torch from torch import nn from torch.nn import functional as F from .common_layers import Prenet, Linear from .attentions import init_attn # NOTE: linter has a problem with the current TF release #pylint: disable=no-value-for-parameter #pylint: disable=unexpected-keyword-arg class ConvBNBlock(nn.Module): r"""Convolutions with Batch Normalization and non-linear activation. Args: in_channels (int): number of input channels. out_channels (int): number of output channels. kernel_size (int): convolution kernel size. activation (str): 'relu', 'tanh', None (linear). Shapes: - input: (B, C_in, T) - output: (B, C_out, T) """ def __init__(self, in_channels, out_channels, kernel_size, activation=None): super(ConvBNBlock, self).__init__() assert (kernel_size - 1) % 2 == 0 padding = (kernel_size - 1) // 2 self.convolution1d = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding) self.batch_normalization = nn.BatchNorm1d(out_channels, momentum=0.1, eps=1e-5) self.dropout = nn.Dropout(p=0.5) if activation == 'relu': self.activation = nn.ReLU() elif activation == 'tanh': self.activation = nn.Tanh() else: self.activation = nn.Identity() def forward(self, x): o = self.convolution1d(x) o = self.batch_normalization(o) o = self.activation(o) o = self.dropout(o) return o class Postnet(nn.Module): r"""Tacotron2 Postnet Args: in_out_channels (int): number of output channels. Shapes: - input: (B, C_in, T) - output: (B, C_in, T) """ def __init__(self, in_out_channels, num_convs=5): super(Postnet, self).__init__() self.convolutions = nn.ModuleList() self.convolutions.append( ConvBNBlock(in_out_channels, 512, kernel_size=5, activation='tanh')) for _ in range(1, num_convs - 1): self.convolutions.append( ConvBNBlock(512, 512, kernel_size=5, activation='tanh')) self.convolutions.append( ConvBNBlock(512, in_out_channels, kernel_size=5, activation=None)) def forward(self, x): o = x for layer in self.convolutions: o = layer(o) return o class Encoder(nn.Module): r"""Tacotron2 Encoder Args: in_out_channels (int): number of input and output channels. Shapes: - input: (B, C_in, T) - output: (B, C_in, T) """ def __init__(self, in_out_channels=512): super(Encoder, self).__init__() self.convolutions = nn.ModuleList() for _ in range(3): self.convolutions.append( ConvBNBlock(in_out_channels, in_out_channels, 5, 'relu')) self.lstm = nn.LSTM(in_out_channels, int(in_out_channels / 2), num_layers=1, batch_first=True, bias=True, bidirectional=True) self.rnn_state = None def forward(self, x, input_lengths): o = x for layer in self.convolutions: o = layer(o) o = o.transpose(1, 2) o = nn.utils.rnn.pack_padded_sequence(o, input_lengths.cpu(), batch_first=True) self.lstm.flatten_parameters() o, _ = self.lstm(o) o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True) return o def inference(self, x): o = x for layer in self.convolutions: o = layer(o) o = o.transpose(1, 2) # self.lstm.flatten_parameters() o, _ = self.lstm(o) return o # adapted from https://github.com/NVIDIA/tacotron2/ class Decoder(nn.Module): """Tacotron2 decoder. We don't use Zoneout but Dropout between RNN layers. Args: in_channels (int): number of input channels. frame_channels (int): number of feature frame channels. r (int): number of outputs per time step (reduction rate). memory_size (int): size of the past window. if <= 0 memory_size = r attn_type (string): type of attention used in decoder. attn_win (bool): if true, define an attention window centered to maximum attention response. It provides more robust attention alignment especially at interence time. attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'. prenet_type (string): 'original' or 'bn'. prenet_dropout (float): prenet dropout rate. forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736 trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736 forward_attn_mask (bool): if true, mask attention values smaller than a threshold. location_attn (bool): if true, use location sensitive attention. attn_K (int): number of attention heads for GravesAttention. separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow. """ # Pylint gets confused by PyTorch conventions here #pylint: disable=attribute-defined-outside-init def __init__(self, in_channels, frame_channels, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet): super(Decoder, self).__init__() self.frame_channels = frame_channels self.r_init = r self.r = r self.encoder_embedding_dim = in_channels self.separate_stopnet = separate_stopnet self.max_decoder_steps = 1000 self.stop_threshold = 0.5 # model dimensions self.query_dim = 1024 self.decoder_rnn_dim = 1024 self.prenet_dim = 256 self.attn_dim = 128 self.p_attention_dropout = 0.1 self.p_decoder_dropout = 0.1 # memory -> |Prenet| -> processed_memory prenet_dim = self.frame_channels self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[self.prenet_dim, self.prenet_dim], bias=False) self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_channels, self.query_dim, bias=True) self.attention = init_attn(attn_type=attn_type, query_dim=self.query_dim, embedding_dim=in_channels, attention_dim=128, location_attention=location_attn, attention_location_n_filters=32, attention_location_kernel_size=31, windowing=attn_win, norm=attn_norm, forward_attn=forward_attn, trans_agent=trans_agent, forward_attn_mask=forward_attn_mask, attn_K=attn_K) self.decoder_rnn = nn.LSTMCell(self.query_dim + in_channels, self.decoder_rnn_dim, bias=True) self.linear_projection = Linear(self.decoder_rnn_dim + in_channels, self.frame_channels * self.r_init) self.stopnet = nn.Sequential( nn.Dropout(0.1), Linear(self.decoder_rnn_dim + self.frame_channels * self.r_init, 1, bias=True, init_gain='sigmoid')) self.memory_truncated = None def set_r(self, new_r): self.r = new_r def get_go_frame(self, inputs): B = inputs.size(0) memory = torch.zeros(1, device=inputs.device).repeat( B, self.frame_channels * self.r) return memory def _init_states(self, inputs, mask, keep_states=False): B = inputs.size(0) # T = inputs.size(1) if not keep_states: self.query = torch.zeros(1, device=inputs.device).repeat( B, self.query_dim) self.attention_rnn_cell_state = torch.zeros( 1, device=inputs.device).repeat(B, self.query_dim) self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat( B, self.decoder_rnn_dim) self.decoder_cell = torch.zeros(1, device=inputs.device).repeat( B, self.decoder_rnn_dim) self.context = torch.zeros(1, device=inputs.device).repeat( B, self.encoder_embedding_dim) self.inputs = inputs self.processed_inputs = self.attention.preprocess_inputs(inputs) self.mask = mask def _reshape_memory(self, memory): """ Reshape the spectrograms for given 'r' """ # Grouping multiple frames if necessary if memory.size(-1) == self.frame_channels: memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) # Time first (T_decoder, B, frame_channels) memory = memory.transpose(0, 1) return memory def _parse_outputs(self, outputs, stop_tokens, alignments): alignments = torch.stack(alignments).transpose(0, 1) stop_tokens = torch.stack(stop_tokens).transpose(0, 1) outputs = torch.stack(outputs).transpose(0, 1).contiguous() outputs = outputs.view(outputs.size(0), -1, self.frame_channels) outputs = outputs.transpose(1, 2) return outputs, stop_tokens, alignments def _update_memory(self, memory): if len(memory.shape) == 2: return memory[:, self.frame_channels * (self.r - 1):] return memory[:, :, self.frame_channels * (self.r - 1):] def decode(self, memory): ''' shapes: - memory: B x r * self.frame_channels ''' # self.context: B x D_en # query_input: B x D_en + (r * self.frame_channels) query_input = torch.cat((memory, self.context), -1) # self.query and self.attention_rnn_cell_state : B x D_attn_rnn self.query, self.attention_rnn_cell_state = self.attention_rnn( query_input, (self.query, self.attention_rnn_cell_state)) self.query = F.dropout(self.query, self.p_attention_dropout, self.training) self.attention_rnn_cell_state = F.dropout( self.attention_rnn_cell_state, self.p_attention_dropout, self.training) # B x D_en self.context = self.attention(self.query, self.inputs, self.processed_inputs, self.mask) # B x (D_en + D_attn_rnn) decoder_rnn_input = torch.cat((self.query, self.context), -1) # self.decoder_hidden and self.decoder_cell: B x D_decoder_rnn self.decoder_hidden, self.decoder_cell = self.decoder_rnn( decoder_rnn_input, (self.decoder_hidden, self.decoder_cell)) self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training) # B x (D_decoder_rnn + D_en) decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1) # B x (self.r * self.frame_channels) decoder_output = self.linear_projection(decoder_hidden_context) # B x (D_decoder_rnn + (self.r * self.frame_channels)) stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1) if self.separate_stopnet: stop_token = self.stopnet(stopnet_input.detach()) else: stop_token = self.stopnet(stopnet_input) # select outputs for the reduction rate self.r decoder_output = decoder_output[:, :self.r * self.frame_channels] return decoder_output, self.attention.attention_weights, stop_token def forward(self, inputs, memories, mask): r"""Train Decoder with teacher forcing. Args: inputs: Encoder outputs. memories: Feature frames for teacher-forcing. mask: Attention mask for sequence padding. Shapes: - inputs: (B, T, D_out_enc) - memory: (B, T_mel, D_mel) - outputs: (B, T_mel, D_mel) - alignments: (B, T_in, T_out) - stop_tokens: (B, T_out) """ memory = self.get_go_frame(inputs).unsqueeze(0) memories = self._reshape_memory(memories) memories = torch.cat((memory, memories), dim=0) memories = self._update_memory(memories) memories = self.prenet(memories) self._init_states(inputs, mask=mask) self.attention.init_states(inputs) outputs, stop_tokens, alignments = [], [], [] while len(outputs) < memories.size(0) - 1: memory = memories[len(outputs)] decoder_output, attention_weights, stop_token = self.decode(memory) outputs += [decoder_output.squeeze(1)] stop_tokens += [stop_token.squeeze(1)] alignments += [attention_weights] outputs, stop_tokens, alignments = self._parse_outputs( outputs, stop_tokens, alignments) return outputs, alignments, stop_tokens def inference(self, inputs): r"""Decoder inference without teacher forcing and use Stopnet to stop decoder. Args: inputs: Encoder outputs. Shapes: - inputs: (B, T, D_out_enc) - outputs: (B, T_mel, D_mel) - alignments: (B, T_in, T_out) - stop_tokens: (B, T_out) """ memory = self.get_go_frame(inputs) memory = self._update_memory(memory) self._init_states(inputs, mask=None) self.attention.init_states(inputs) outputs, stop_tokens, alignments, t = [], [], [], 0 while True: memory = self.prenet(memory) decoder_output, alignment, stop_token = self.decode(memory) stop_token = torch.sigmoid(stop_token.data) outputs += [decoder_output.squeeze(1)] stop_tokens += [stop_token] alignments += [alignment] if stop_token > self.stop_threshold and t > inputs.shape[0] // 2: break if len(outputs) == self.max_decoder_steps: print(" | > Decoder stopped with 'max_decoder_steps") break memory = self._update_memory(decoder_output) t += 1 outputs, stop_tokens, alignments = self._parse_outputs( outputs, stop_tokens, alignments) return outputs, alignments, stop_tokens def inference_truncated(self, inputs): """ Preserve decoder states for continuous inference """ if self.memory_truncated is None: self.memory_truncated = self.get_go_frame(inputs) self._init_states(inputs, mask=None, keep_states=False) else: self._init_states(inputs, mask=None, keep_states=True) self.attention.init_win_idx() self.attention.init_states(inputs) outputs, stop_tokens, alignments, t = [], [], [], 0 while True: memory = self.prenet(self.memory_truncated) decoder_output, alignment, stop_token = self.decode(memory) stop_token = torch.sigmoid(stop_token.data) outputs += [decoder_output.squeeze(1)] stop_tokens += [stop_token] alignments += [alignment] if stop_token > 0.7: break if len(outputs) == self.max_decoder_steps: print(" | > Decoder stopped with 'max_decoder_steps") break self.memory_truncated = decoder_output t += 1 outputs, stop_tokens, alignments = self._parse_outputs( outputs, stop_tokens, alignments) return outputs, alignments, stop_tokens def inference_step(self, inputs, t, memory=None): """ For debug purposes """ if t == 0: memory = self.get_go_frame(inputs) self._init_states(inputs, mask=None) memory = self.prenet(memory) decoder_output, stop_token, alignment = self.decode(memory) stop_token = torch.sigmoid(stop_token.data) memory = decoder_output return decoder_output, stop_token, alignment