import math import numpy as np import torch from torch import nn from inspect import signature from torch.nn import functional from TTS.tts.utils.generic_utils import sequence_mask from TTS.tts.utils.ssim import ssim # pylint: disable=abstract-method Method # relates https://github.com/pytorch/pytorch/issues/42305 class L1LossMasked(nn.Module): def __init__(self, seq_len_norm): super().__init__() self.seq_len_norm = seq_len_norm def forward(self, x, target, length): """ Args: x: A Variable containing a FloatTensor of size (batch, max_len, dim) which contains the unnormalized probability for each class. target: A Variable containing a LongTensor of size (batch, max_len, dim) which contains the index of the true class for each corresponding step. length: A Variable containing a LongTensor of size (batch,) which contains the length of each data in a batch. Shapes: x: B x T X D target: B x T x D length: B Returns: loss: An average loss value in range [0, 1] masked by the length. """ # mask: (batch, max_len, 1) target.requires_grad = False mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float() if self.seq_len_norm: norm_w = mask / mask.sum(dim=1, keepdim=True) out_weights = norm_w.div(target.shape[0] * target.shape[2]) mask = mask.expand_as(x) loss = functional.l1_loss(x * mask, target * mask, reduction='none') loss = loss.mul(out_weights.to(loss.device)).sum() else: mask = mask.expand_as(x) loss = functional.l1_loss(x * mask, target * mask, reduction='sum') loss = loss / mask.sum() return loss class MSELossMasked(nn.Module): def __init__(self, seq_len_norm): super(MSELossMasked, self).__init__() self.seq_len_norm = seq_len_norm def forward(self, x, target, length): """ Args: x: A Variable containing a FloatTensor of size (batch, max_len, dim) which contains the unnormalized probability for each class. target: A Variable containing a LongTensor of size (batch, max_len, dim) which contains the index of the true class for each corresponding step. length: A Variable containing a LongTensor of size (batch,) which contains the length of each data in a batch. Shapes: x: B x T X D target: B x T x D length: B Returns: loss: An average loss value in range [0, 1] masked by the length. """ # mask: (batch, max_len, 1) target.requires_grad = False mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float() if self.seq_len_norm: norm_w = mask / mask.sum(dim=1, keepdim=True) out_weights = norm_w.div(target.shape[0] * target.shape[2]) mask = mask.expand_as(x) loss = functional.mse_loss(x * mask, target * mask, reduction='none') loss = loss.mul(out_weights.to(loss.device)).sum() else: mask = mask.expand_as(x) loss = functional.mse_loss(x * mask, target * mask, reduction='sum') loss = loss / mask.sum() return loss class SSIMLoss(torch.nn.Module): """SSIM loss as explained here https://en.wikipedia.org/wiki/Structural_similarity""" def __init__(self): super().__init__() self.loss_func = ssim def forward(self, y_hat, y, length=None): """ Args: y_hat (tensor): model prediction values. y (tensor): target values. length (tensor): length of each sample in a batch. Shapes: y_hat: B x T X D y: B x T x D length: B Returns: loss: An average loss value in range [0, 1] masked by the length. """ if length is not None: m = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float().to( y_hat.device) y_hat, y = y_hat * m, y * m return 1 - self.loss_func(y_hat.unsqueeze(1), y.unsqueeze(1)) class AttentionEntropyLoss(nn.Module): # pylint: disable=R0201 def forward(self, align): """ Forces attention to be more decisive by penalizing soft attention weights TODO: arguments TODO: unit_test """ entropy = torch.distributions.Categorical(probs=align).entropy() loss = (entropy / np.log(align.shape[1])).mean() return loss class BCELossMasked(nn.Module): def __init__(self, pos_weight): super(BCELossMasked, self).__init__() self.pos_weight = pos_weight def forward(self, x, target, length): """ Args: x: A Variable containing a FloatTensor of size (batch, max_len) which contains the unnormalized probability for each class. target: A Variable containing a LongTensor of size (batch, max_len) which contains the index of the true class for each corresponding step. length: A Variable containing a LongTensor of size (batch,) which contains the length of each data in a batch. Shapes: x: B x T target: B x T length: B Returns: loss: An average loss value in range [0, 1] masked by the length. """ # mask: (batch, max_len, 1) target.requires_grad = False if length is not None: mask = sequence_mask(sequence_length=length, max_len=target.size(1)).float() x = x * mask target = target * mask num_items = mask.sum() else: num_items = torch.numel(x) loss = functional.binary_cross_entropy_with_logits( x, target, pos_weight=self.pos_weight, reduction='sum') loss = loss / num_items return loss class DifferentailSpectralLoss(nn.Module): """Differential Spectral Loss https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf""" def __init__(self, loss_func): super().__init__() self.loss_func = loss_func def forward(self, x, target, length=None): """ Shapes: x: B x T target: B x T length: B Returns: loss: An average loss value in range [0, 1] masked by the length. """ x_diff = x[:, 1:] - x[:, :-1] target_diff = target[:, 1:] - target[:, :-1] if length is None: return self.loss_func(x_diff, target_diff) return self.loss_func(x_diff, target_diff, length-1) class GuidedAttentionLoss(torch.nn.Module): def __init__(self, sigma=0.4): super(GuidedAttentionLoss, self).__init__() self.sigma = sigma def _make_ga_masks(self, ilens, olens): B = len(ilens) max_ilen = max(ilens) max_olen = max(olens) ga_masks = torch.zeros((B, max_olen, max_ilen)) for idx, (ilen, olen) in enumerate(zip(ilens, olens)): ga_masks[idx, :olen, :ilen] = self._make_ga_mask( ilen, olen, self.sigma) return ga_masks def forward(self, att_ws, ilens, olens): ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device) seq_masks = self._make_masks(ilens, olens).to(att_ws.device) losses = ga_masks * att_ws loss = torch.mean(losses.masked_select(seq_masks)) return loss @staticmethod def _make_ga_mask(ilen, olen, sigma): grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen)) grid_x, grid_y = grid_x.float(), grid_y.float() return 1.0 - torch.exp(-(grid_y / ilen - grid_x / olen)**2 / (2 * (sigma**2))) @staticmethod def _make_masks(ilens, olens): in_masks = sequence_mask(ilens) out_masks = sequence_mask(olens) return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) class Huber(nn.Module): # pylint: disable=R0201 def forward(self, x, y, length=None): """ Shapes: x: B x T y: B x T length: B """ mask = sequence_mask(sequence_length=length, max_len=y.size(1)).float() return torch.nn.functional.smooth_l1_loss( x * mask, y * mask, reduction='sum') / mask.sum() ######################## # MODEL LOSS LAYERS ######################## class TacotronLoss(torch.nn.Module): """Collection of Tacotron set-up based on provided config.""" def __init__(self, c, stopnet_pos_weight=10, ga_sigma=0.4): super(TacotronLoss, self).__init__() self.stopnet_pos_weight = stopnet_pos_weight self.ga_alpha = c.ga_alpha self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha self.decoder_alpha = c.decoder_loss_alpha self.postnet_alpha = c.postnet_loss_alpha self.decoder_ssim_alpha = c.decoder_ssim_alpha self.postnet_ssim_alpha = c.postnet_ssim_alpha self.config = c # postnet and decoder loss if c.loss_masking: self.criterion = L1LossMasked(c.seq_len_norm) if c.model in [ "Tacotron" ] else MSELossMasked(c.seq_len_norm) else: self.criterion = nn.L1Loss() if c.model in ["Tacotron" ] else nn.MSELoss() # guided attention loss if c.ga_alpha > 0: self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma) # differential spectral loss if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0: self.criterion_diff_spec = DifferentailSpectralLoss(loss_func=self.criterion) # ssim loss if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0: self.criterion_ssim = SSIMLoss() # stopnet loss # pylint: disable=not-callable self.criterion_st = BCELossMasked( pos_weight=torch.tensor(stopnet_pos_weight)) if c.stopnet else None def forward(self, postnet_output, decoder_output, mel_input, linear_input, stopnet_output, stopnet_target, output_lens, decoder_b_output, alignments, alignment_lens, alignments_backwards, input_lens): return_dict = {} # remove lengths if no masking is applied if not self.config.loss_masking: output_lens = None # decoder and postnet losses if self.config.loss_masking: if self.decoder_alpha > 0: decoder_loss = self.criterion(decoder_output, mel_input, output_lens) if self.postnet_alpha > 0: if self.config.model in ["Tacotron", "TacotronGST"]: postnet_loss = self.criterion(postnet_output, linear_input, output_lens) else: postnet_loss = self.criterion(postnet_output, mel_input, output_lens) else: if self.decoder_alpha > 0: decoder_loss = self.criterion(decoder_output, mel_input) if self.postnet_alpha > 0: if self.config.model in ["Tacotron", "TacotronGST"]: postnet_loss = self.criterion(postnet_output, linear_input) else: postnet_loss = self.criterion(postnet_output, mel_input) loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss return_dict['decoder_loss'] = decoder_loss return_dict['postnet_loss'] = postnet_loss # stopnet loss stop_loss = self.criterion_st( stopnet_output, stopnet_target, output_lens) if self.config.stopnet else torch.zeros(1) if not self.config.separate_stopnet and self.config.stopnet: loss += stop_loss return_dict['stopnet_loss'] = stop_loss # backward decoder loss (if enabled) if self.config.bidirectional_decoder: if self.config.loss_masking: decoder_b_loss = self.criterion( torch.flip(decoder_b_output, dims=(1, )), mel_input, output_lens) else: decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1, )), mel_input) decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1, )), decoder_output) loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss) return_dict['decoder_b_loss'] = decoder_b_loss return_dict['decoder_c_loss'] = decoder_c_loss # double decoder consistency loss (if enabled) if self.config.double_decoder_consistency: if self.config.loss_masking: decoder_b_loss = self.criterion(decoder_b_output, mel_input, output_lens) else: decoder_b_loss = self.criterion(decoder_b_output, mel_input) # decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output) attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards) loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss) return_dict['decoder_coarse_loss'] = decoder_b_loss return_dict['decoder_ddc_loss'] = attention_c_loss # guided attention loss (if enabled) if self.config.ga_alpha > 0: ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens) loss += ga_loss * self.ga_alpha return_dict['ga_loss'] = ga_loss # decoder differential spectral loss if self.config.decoder_diff_spec_alpha > 0: decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens) loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha return_dict['decoder_diff_spec_loss'] = decoder_diff_spec_loss # postnet differential spectral loss if self.config.postnet_diff_spec_alpha > 0: postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, mel_input, output_lens) loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha return_dict['postnet_diff_spec_loss'] = postnet_diff_spec_loss # decoder ssim loss if self.config.decoder_ssim_alpha > 0: decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens) loss += decoder_ssim_loss * self.postnet_ssim_alpha return_dict['decoder_ssim_loss'] = decoder_ssim_loss # postnet ssim loss if self.config.postnet_ssim_alpha > 0: postnet_ssim_loss = self.criterion_ssim(postnet_output, mel_input, output_lens) loss += postnet_ssim_loss * self.postnet_ssim_alpha return_dict['postnet_ssim_loss'] = postnet_ssim_loss return_dict['loss'] = loss # check if any loss is NaN for key, loss in return_dict.items(): if torch.isnan(loss): raise RuntimeError(f" [!] NaN loss with {key}.") return return_dict class GlowTTSLoss(torch.nn.Module): def __init__(self): super().__init__() self.constant_factor = 0.5 * math.log(2 * math.pi) def forward(self, z, means, scales, log_det, y_lengths, o_dur_log, o_attn_dur, x_lengths): return_dict = {} # flow loss - neg log likelihood pz = torch.sum(scales) + 0.5 * torch.sum( torch.exp(-2 * scales) * (z - means)**2) log_mle = self.constant_factor + (pz - torch.sum(log_det)) / ( torch.sum(y_lengths) * z.shape[1]) # duration loss - MSE # loss_dur = torch.sum((o_dur_log - o_attn_dur)**2) / torch.sum(x_lengths) # duration loss - huber loss loss_dur = torch.nn.functional.smooth_l1_loss( o_dur_log, o_attn_dur, reduction='sum') / torch.sum(x_lengths) return_dict['loss'] = log_mle + loss_dur return_dict['log_mle'] = log_mle return_dict['loss_dur'] = loss_dur # check if any loss is NaN for key, loss in return_dict.items(): if torch.isnan(loss): raise RuntimeError(f" [!] NaN loss with {key}.") return return_dict class SpeedySpeechLoss(nn.Module): def __init__(self, c): super().__init__() self.l1 = L1LossMasked(False) self.ssim = SSIMLoss() self.huber = Huber() self.ssim_alpha = c.ssim_alpha self.huber_alpha = c.huber_alpha self.l1_alpha = c.l1_alpha def forward(self, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens): l1_loss = self.l1(decoder_output, decoder_target, decoder_output_lens) ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens) huber_loss = self.huber(dur_output, dur_target, input_lens) loss = l1_loss + ssim_loss + huber_loss return {'loss': loss, 'loss_l1': l1_loss, 'loss_ssim': ssim_loss, 'loss_dur': huber_loss}