import torch from torch import nn from torch.nn import functional as F from TTS.tts.layers.generic.wavenet import WN from ..generic.normalization import LayerNorm class ResidualConv1dLayerNormBlock(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, num_layers, dropout_p): """Conv1d with Layer Normalization and residual connection as in GlowTTS paper. https://arxiv.org/pdf/1811.00002.pdf x |-> conv1d -> layer_norm -> relu -> dropout -> + -> o |---------------> conv1d_1x1 -----------------------| Args: in_channels (int): number of input tensor channels. hidden_channels (int): number of inner layer channels. out_channels (int): number of output tensor channels. kernel_size (int): kernel size of conv1d filter. num_layers (int): number of blocks. dropout_p (float): dropout rate for each block. """ super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.num_layers = num_layers self.dropout_p = dropout_p assert num_layers > 1, " [!] number of layers should be > 0." assert kernel_size % 2 == 1, " [!] kernel size should be odd number." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() for idx in range(num_layers): self.conv_layers.append( nn.Conv1d(in_channels if idx == 0 else hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_res = x for i in range(self.num_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x * x_mask) x = F.dropout(F.relu(x), self.dropout_p, training=self.training) x = x_res + self.proj(x) return x * x_mask class InvConvNear(nn.Module): """Invertible Convolution with input splitting as in GlowTTS paper. https://arxiv.org/pdf/1811.00002.pdf Args: channels (int): input and output channels. num_splits (int): number of splits, also H and W of conv layer. no_jacobian (bool): enable/disable jacobian computations. Note: Split the input into groups of size self.num_splits and perform 1x1 convolution separately. Cast 1x1 conv operation to 2d by reshaping the input for efficiency. """ def __init__(self, channels, num_splits=4, no_jacobian=False, **kwargs): # pylint: disable=unused-argument super().__init__() assert num_splits % 2 == 0 self.channels = channels self.num_splits = num_splits self.no_jacobian = no_jacobian self.weight_inv = None w_init = torch.qr( torch.FloatTensor(self.num_splits, self.num_splits).normal_())[0] if torch.det(w_init) < 0: w_init[:, 0] = -1 * w_init[:, 0] self.weight = nn.Parameter(w_init) def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument """ Shapes: x: B x C x T x_mask: B x 1 x T """ b, c, t = x.size() assert c % self.num_splits == 0 if x_mask is None: x_mask = 1 x_len = torch.ones((b, ), dtype=x.dtype, device=x.device) * t else: x_len = torch.sum(x_mask, [1, 2]) x = x.view(b, 2, c // self.num_splits, self.num_splits // 2, t) x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.num_splits, c // self.num_splits, t) if reverse: if self.weight_inv is not None: weight = self.weight_inv else: weight = torch.inverse( self.weight.float()).to(dtype=self.weight.dtype) logdet = None else: weight = self.weight if self.no_jacobian: logdet = 0 else: logdet = torch.logdet( self.weight) * (c / self.num_splits) * x_len # [b] weight = weight.view(self.num_splits, self.num_splits, 1, 1) z = F.conv2d(x, weight) z = z.view(b, 2, self.num_splits // 2, c // self.num_splits, t) z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask return z, logdet def store_inverse(self): weight_inv = torch.inverse( self.weight.float()).to(dtype=self.weight.dtype) self.weight_inv = nn.Parameter(weight_inv, requires_grad=False) class CouplingBlock(nn.Module): """Glow Affine Coupling block as in GlowTTS paper. https://arxiv.org/pdf/1811.00002.pdf x --> x0 -> conv1d -> wavenet -> conv1d --> t, s -> concat(s*x1 + t, x0) -> o '-> x1 - - - - - - - - - - - - - - - - - - - - - - - - - ^ Args: in_channels (int): number of input tensor channels. hidden_channels (int): number of hidden channels. kernel_size (int): WaveNet filter kernel size. dilation_rate (int): rate to increase dilation by each layer in a decoder block. num_layers (int): number of WaveNet layers. c_in_channels (int): number of conditioning input channels. dropout_p (int): wavenet dropout rate. sigmoid_scale (bool): enable/disable sigmoid scaling for output scale. Note: It does not use conditional inputs differently from WaveGlow. """ def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels=0, dropout_p=0, sigmoid_scale=False): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.num_layers = num_layers self.c_in_channels = c_in_channels self.dropout_p = dropout_p self.sigmoid_scale = sigmoid_scale # input layer start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) start = torch.nn.utils.weight_norm(start) self.start = start # output layer # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(hidden_channels, in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end # coupling layers self.wn = WN(in_channels, hidden_channels, kernel_size, dilation_rate, num_layers, c_in_channels, dropout_p) def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): # pylint: disable=unused-argument """ Shapes: x: B x C x T x_mask: B x 1 x T g: B x C x 1 """ if x_mask is None: x_mask = 1 x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] x = self.start(x_0) * x_mask x = self.wn(x, x_mask, g) out = self.end(x) z_0 = x_0 t = out[:, :self.in_channels // 2, :] s = out[:, self.in_channels // 2:, :] if self.sigmoid_scale: s = torch.log(1e-6 + torch.sigmoid(s + 2)) if reverse: z_1 = (x_1 - t) * torch.exp(-s) * x_mask logdet = None else: z_1 = (t + torch.exp(s) * x_1) * x_mask logdet = torch.sum(s * x_mask, [1, 2]) z = torch.cat([z_0, z_1], 1) return z, logdet def store_inverse(self): self.wn.remove_weight_norm()