import torch from torch import nn class TimeDepthSeparableConv(nn.Module): """Time depth separable convolution as in https://arxiv.org/pdf/1904.02619.pdf It shows competative results with less computation and memory footprint.""" def __init__(self, in_channels, hid_channels, out_channels, kernel_size, bias=True): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hid_channels = hid_channels self.kernel_size = kernel_size self.time_conv = nn.Conv1d( in_channels, 2 * hid_channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.norm1 = nn.BatchNorm1d(2 * hid_channels) self.depth_conv = nn.Conv1d( hid_channels, hid_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=hid_channels, bias=bias, ) self.norm2 = nn.BatchNorm1d(hid_channels) self.time_conv2 = nn.Conv1d( hid_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.norm3 = nn.BatchNorm1d(out_channels) def forward(self, x): x_res = x x = self.time_conv(x) x = self.norm1(x) x = nn.functional.glu(x, dim=1) x = self.depth_conv(x) x = self.norm2(x) x = x * torch.sigmoid(x) x = self.time_conv2(x) x = self.norm3(x) x = x_res + x return x class TimeDepthSeparableConvBlock(nn.Module): def __init__(self, in_channels, hid_channels, out_channels, num_layers, kernel_size, bias=True): super().__init__() assert (kernel_size - 1) % 2 == 0 assert num_layers > 1 self.layers = nn.ModuleList() layer = TimeDepthSeparableConv( in_channels, hid_channels, out_channels if num_layers == 1 else hid_channels, kernel_size, bias) self.layers.append(layer) for idx in range(num_layers - 1): layer = TimeDepthSeparableConv( hid_channels, hid_channels, out_channels if (idx + 1) == (num_layers - 1) else hid_channels, kernel_size, bias) self.layers.append(layer) def forward(self, x, mask): for layer in self.layers: x = layer(x * mask) return x