{ "model": "Tacotron2", "run_name": "ljspeech-ddc", "run_description": "tacotron2 with DDC and differential spectral loss.", // AUDIO PARAMETERS "audio":{ // stft parameters "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. "win_length": 1024, // stft window length in ms. "hop_length": 256, // stft window hop-lengh in ms. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. // Audio processing parameters "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. // Silence trimming "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true) "trim_db": 60, // threshold for timming silence. Set this according to your dataset. // Griffin-Lim "power": 1.5, // value to sharpen wav signals after GL algorithm. "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // MelSpectrogram parameters "num_mels": 80, // size of the mel spec frame. "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! "spec_gain": 1, // Normalization parameters "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. "min_level_db": -100, // lower bound for normalization "symmetric_norm": true, // move normalization to range [-1, 1] "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored }, // VOCABULARY PARAMETERS // if custom character set is not defined, // default set in symbols.py is used // "characters":{ // "pad": "_", // "eos": "~", // "bos": "^", // "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ", // "punctuations":"!'(),-.:;? ", // "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ" // }, // DISTRIBUTED TRAINING "distributed":{ "backend": "nccl", "url": "tcp:\/\/localhost:54321" }, "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. // TRAINING "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. "eval_batch_size":16, "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. "gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. "mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate. // LOSS SETTINGS "loss_masking": true, // enable / disable loss masking against the sequence padding. "decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled "postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled "postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled "decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled "decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled "postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled "ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. "stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. // VALIDATION "run_eval": true, "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. // OPTIMIZER "noam_schedule": false, // use noam warmup and lr schedule. "grad_clip": 1.0, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "wd": 0.000001, // Weight decay weight. "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. // TACOTRON PRENET "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. "prenet_type": "original", // "original" or "bn". "prenet_dropout": false, // enable/disable dropout at prenet. // TACOTRON ATTENTION "attention_type": "original", // 'original' , 'graves', 'dynamic_convolution' "attention_heads": 4, // number of attention heads (only for 'graves') "attention_norm": "sigmoid", // softmax or sigmoid. "windowing": false, // Enables attention windowing. Used only in eval mode. "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. "forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. "transition_agent": false, // enable/disable transition agent of forward attention. "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. "bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. "double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/ "ddc_r": 7, // reduction rate for coarse decoder. // STOPNET "stopnet": true, // Train stopnet predicting the end of synthesis. "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. // TENSORBOARD and LOGGING "print_step": 25, // Number of steps to log training on console. "tb_plot_step": 100, // Number of steps to plot TB training figures. "print_eval": false, // If True, it prints intermediate loss values in evalulation. "save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. "checkpoint": true, // If true, it saves checkpoints per "save_step" "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. // DATA LOADING "text_cleaner": "phoneme_cleaners", "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes. "batch_group_size": 4, //Number of batches to shuffle after bucketing. "min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training "max_seq_len": 153, // DATASET-RELATED: maximum text length "compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage. "use_noise_augment": true, // PATHS "output_path": "/home/erogol/Models/LJSpeech/", // PHONEMES "phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder. "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages // MULTI-SPEAKER and GST "use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning. "use_gst": false, // use global style tokens "use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 "external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558 "gst": { // gst parameter if gst is enabled "gst_style_input": null, // Condition the style input either on a // -> wave file [path to wave] or // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15} // with the dictionary being len(dict) <= len(gst_style_tokens). "gst_embedding_dim": 512, "gst_num_heads": 4, "gst_style_tokens": 10, "gst_use_speaker_embedding": false }, // DATASETS "datasets": // List of datasets. They all merged and they get different speaker_ids. [ { "name": "ljspeech", "path": "/home/erogol/Data/LJSpeech-1.1/", "meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers "meta_file_val": null } ] }