import umap import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use("Agg") colormap = ( np.array( [ [76, 255, 0], [0, 127, 70], [255, 0, 0], [255, 217, 38], [0, 135, 255], [165, 0, 165], [255, 167, 255], [0, 255, 255], [255, 96, 38], [142, 76, 0], [33, 0, 127], [0, 0, 0], [183, 183, 183], ], dtype=np.float, ) / 255 ) def plot_embeddings(embeddings, num_utter_per_speaker): embeddings = embeddings[: 10 * num_utter_per_speaker] model = umap.UMAP() projection = model.fit_transform(embeddings) num_speakers = embeddings.shape[0] // num_utter_per_speaker ground_truth = np.repeat(np.arange(num_speakers), num_utter_per_speaker) colors = [colormap[i] for i in ground_truth] fig, ax = plt.subplots(figsize=(16, 10)) _ = ax.scatter(projection[:, 0], projection[:, 1], c=colors) plt.gca().set_aspect("equal", "datalim") plt.title("UMAP projection") plt.tight_layout() plt.savefig("umap") return fig