import datetime import os import re import torch from TTS.speaker_encoder.model import SpeakerEncoder from TTS.utils.generic_utils import check_argument def to_camel(text): text = text.capitalize() return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text) def setup_model(c): model = SpeakerEncoder(c.model['input_dim'], c.model['proj_dim'], c.model['lstm_dim'], c.model['num_lstm_layers']) return model def save_checkpoint(model, optimizer, model_loss, out_path, current_step, epoch): checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step) checkpoint_path = os.path.join(out_path, checkpoint_path) print(" | | > Checkpoint saving : {}".format(checkpoint_path)) new_state_dict = model.state_dict() state = { 'model': new_state_dict, 'optimizer': optimizer.state_dict() if optimizer is not None else None, 'step': current_step, 'epoch': epoch, 'loss': model_loss, 'date': datetime.date.today().strftime("%B %d, %Y"), } torch.save(state, checkpoint_path) def save_best_model(model, optimizer, model_loss, best_loss, out_path, current_step): if model_loss < best_loss: new_state_dict = model.state_dict() state = { 'model': new_state_dict, 'optimizer': optimizer.state_dict(), 'step': current_step, 'loss': model_loss, 'date': datetime.date.today().strftime("%B %d, %Y"), } best_loss = model_loss bestmodel_path = 'best_model.pth.tar' bestmodel_path = os.path.join(out_path, bestmodel_path) print("\n > BEST MODEL ({0:.5f}) : {1:}".format( model_loss, bestmodel_path)) torch.save(state, bestmodel_path) return best_loss def check_config_speaker_encoder(c): """Check the config.json file of the speaker encoder""" check_argument('run_name', c, restricted=True, val_type=str) check_argument('run_description', c, val_type=str) # audio processing parameters check_argument('audio', c, restricted=True, val_type=dict) check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056) check_argument('fft_size', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058) check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000) check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length') check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length') check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1) check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10) check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000) check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5) check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000) # training parameters check_argument('loss', c, enum_list=['ge2e', 'angleproto'], restricted=True, val_type=str) check_argument('grad_clip', c, restricted=True, val_type=float) check_argument('epochs', c, restricted=True, val_type=int, min_val=1) check_argument('lr', c, restricted=True, val_type=float, min_val=0) check_argument('lr_decay', c, restricted=True, val_type=bool) check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0) check_argument('tb_model_param_stats', c, restricted=True, val_type=bool) check_argument('num_speakers_in_batch', c, restricted=True, val_type=int) check_argument('num_loader_workers', c, restricted=True, val_type=int) check_argument('wd', c, restricted=True, val_type=float, min_val=0.0, max_val=1.0) # checkpoint and output parameters check_argument('steps_plot_stats', c, restricted=True, val_type=int) check_argument('checkpoint', c, restricted=True, val_type=bool) check_argument('save_step', c, restricted=True, val_type=int) check_argument('print_step', c, restricted=True, val_type=int) check_argument('output_path', c, restricted=True, val_type=str) # model parameters check_argument('model', c, restricted=True, val_type=dict) check_argument('input_dim', c['model'], restricted=True, val_type=int) check_argument('proj_dim', c['model'], restricted=True, val_type=int) check_argument('lstm_dim', c['model'], restricted=True, val_type=int) check_argument('num_lstm_layers', c['model'], restricted=True, val_type=int) check_argument('use_lstm_with_projection', c['model'], restricted=True, val_type=bool) # in-memory storage parameters check_argument('storage', c, restricted=True, val_type=dict) check_argument('sample_from_storage_p', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0) check_argument('storage_size', c['storage'], restricted=True, val_type=int, min_val=1, max_val=100) check_argument('additive_noise', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0) # datasets - checking only the first entry check_argument('datasets', c, restricted=True, val_type=list) for dataset_entry in c['datasets']: check_argument('name', dataset_entry, restricted=True, val_type=str) check_argument('path', dataset_entry, restricted=True, val_type=str) check_argument('meta_file_train', dataset_entry, restricted=True, val_type=[str, list]) check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)