{ "run_name": "mueller91", "run_description": "train speaker encoder with voxceleb1, voxceleb2 and libriSpeech ", "audio":{ // Audio processing parameters "num_mels": 40, // size of the mel spec frame. "fft_size": 400, // number of stft frequency levels. Size of the linear spectogram frame. "sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "win_length": 400, // stft window length in ms. "hop_length": 160, // stft window hop-lengh in ms. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "min_level_db": -100, // normalization range "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. "power": 1.5, // value to sharpen wav signals after GL algorithm. "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // Normalization parameters "signal_norm": true, // normalize the spec values in range [0, 1] "symmetric_norm": true, // move normalization to range [-1, 1] "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! "do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) "trim_db": 60 // threshold for timming silence. Set this according to your dataset. }, "reinit_layers": [], "loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA) "grad_clip": 3.0, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_decay": false, // if true, Noam learning rate decaying is applied through training. "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "steps_plot_stats": 10, // number of steps to plot embeddings. "num_speakers_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. "num_utters_per_speaker": 10, // "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "wd": 0.000001, // Weight decay weight. "checkpoint": true, // If true, it saves checkpoints per "save_step" "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. "print_step": 20, // Number of steps to log traning on console. "output_path": "../../MozillaTTSOutput/checkpoints/voxceleb_librispeech/speaker_encoder/", // DATASET-RELATED: output path for all training outputs. "model": { "input_dim": 40, "proj_dim": 256, "lstm_dim": 768, "num_lstm_layers": 3, "use_lstm_with_projection": true }, "storage": { "sample_from_storage_p": 0.66, // the probability with which we'll sample from the DataSet in-memory storage "storage_size": 15, // the size of the in-memory storage with respect to a single batch "additive_noise": 1e-5 // add very small gaussian noise to the data in order to increase robustness }, "datasets": [ { "name": "vctk_slim", "path": "../../../audio-datasets/en/VCTK-Corpus/", "meta_file_train": null, "meta_file_val": null }, { "name": "libri_tts", "path": "../../../audio-datasets/en/LibriTTS/train-clean-100", "meta_file_train": null, "meta_file_val": null }, { "name": "libri_tts", "path": "../../../audio-datasets/en/LibriTTS/train-clean-360", "meta_file_train": null, "meta_file_val": null }, { "name": "libri_tts", "path": "../../../audio-datasets/en/LibriTTS/train-other-500", "meta_file_train": null, "meta_file_val": null }, { "name": "voxceleb1", "path": "../../../audio-datasets/en/voxceleb1/", "meta_file_train": null, "meta_file_val": null }, { "name": "voxceleb2", "path": "../../../audio-datasets/en/voxceleb2/", "meta_file_train": null, "meta_file_val": null }, { "name": "common_voice", "path": "../../../audio-datasets/en/MozillaCommonVoice", "meta_file_train": "train.tsv", "meta_file_val": "test.tsv" } ] }