import os import shutil import unittest import numpy as np import torch from tests import get_tests_input_path, get_tests_output_path from torch.utils.data import DataLoader from TTS.tts.datasets import TTSDataset from TTS.tts.datasets.preprocess import ljspeech from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config #pylint: disable=unused-variable OUTPATH = os.path.join(get_tests_output_path(), "loader_tests/") os.makedirs(OUTPATH, exist_ok=True) c = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) ok_ljspeech = os.path.exists(c.data_path) DATA_EXIST = True if not os.path.exists(c.data_path): DATA_EXIST = False print(" > Dynamic data loader test: {}".format(DATA_EXIST)) class TestTTSDataset(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestTTSDataset, self).__init__(*args, **kwargs) self.max_loader_iter = 4 self.ap = AudioProcessor(**c.audio) def _create_dataloader(self, batch_size, r, bgs): items = ljspeech(c.data_path, 'metadata.csv') dataset = TTSDataset.MyDataset( r, c.text_cleaner, compute_linear_spec=True, ap=self.ap, meta_data=items, tp=c.characters if 'characters' in c.keys() else None, batch_group_size=bgs, min_seq_len=c.min_seq_len, max_seq_len=float("inf"), use_phonemes=False) dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=False, collate_fn=dataset.collate_fn, drop_last=True, num_workers=c.num_loader_workers) return dataloader, dataset def test_loader(self): if ok_ljspeech: dataloader, dataset = self._create_dataloader(2, c.r, 0) for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] neg_values = text_input[text_input < 0] check_count = len(neg_values) assert check_count == 0, \ " !! Negative values in text_input: {}".format(check_count) # TODO: more assertion here assert isinstance(speaker_name[0], str) assert linear_input.shape[0] == c.batch_size assert linear_input.shape[2] == self.ap.fft_size // 2 + 1 assert mel_input.shape[0] == c.batch_size assert mel_input.shape[2] == c.audio['num_mels'] # check normalization ranges if self.ap.symmetric_norm: assert mel_input.max() <= self.ap.max_norm assert mel_input.min() >= -self.ap.max_norm #pylint: disable=invalid-unary-operand-type assert mel_input.min() < 0 else: assert mel_input.max() <= self.ap.max_norm assert mel_input.min() >= 0 def test_batch_group_shuffle(self): if ok_ljspeech: dataloader, dataset = self._create_dataloader(2, c.r, 16) last_length = 0 frames = dataset.items for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] avg_length = mel_lengths.numpy().mean() assert avg_length >= last_length dataloader.dataset.sort_items() is_items_reordered = False for idx, item in enumerate(dataloader.dataset.items): if item != frames[idx]: is_items_reordered = True break assert is_items_reordered def test_padding_and_spec(self): if ok_ljspeech: dataloader, dataset = self._create_dataloader(1, 1, 0) for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] # check mel_spec consistency wav = np.asarray(self.ap.load_wav(item_idx[0]), dtype=np.float32) mel = self.ap.melspectrogram(wav).astype('float32') mel = torch.FloatTensor(mel).contiguous() mel_dl = mel_input[0] # NOTE: Below needs to check == 0 but due to an unknown reason # there is a slight difference between two matrices. # TODO: Check this assert cond more in detail. assert abs(mel.T - mel_dl).max() < 1e-5, abs(mel.T - mel_dl).max() # check mel-spec correctness mel_spec = mel_input[0].cpu().numpy() wav = self.ap.inv_melspectrogram(mel_spec.T) self.ap.save_wav(wav, OUTPATH + '/mel_inv_dataloader.wav') shutil.copy(item_idx[0], OUTPATH + '/mel_target_dataloader.wav') # check linear-spec linear_spec = linear_input[0].cpu().numpy() wav = self.ap.inv_spectrogram(linear_spec.T) self.ap.save_wav(wav, OUTPATH + '/linear_inv_dataloader.wav') shutil.copy(item_idx[0], OUTPATH + '/linear_target_dataloader.wav') # check the last time step to be zero padded assert linear_input[0, -1].sum() != 0 assert linear_input[0, -2].sum() != 0 assert mel_input[0, -1].sum() != 0 assert mel_input[0, -2].sum() != 0 assert stop_target[0, -1] == 1 assert stop_target[0, -2] == 0 assert stop_target.sum() == 1 assert len(mel_lengths.shape) == 1 assert mel_lengths[0] == linear_input[0].shape[0] assert mel_lengths[0] == mel_input[0].shape[0] # Test for batch size 2 dataloader, dataset = self._create_dataloader(2, 1, 0) for i, data in enumerate(dataloader): if i == self.max_loader_iter: break text_input = data[0] text_lengths = data[1] speaker_name = data[2] linear_input = data[3] mel_input = data[4] mel_lengths = data[5] stop_target = data[6] item_idx = data[7] if mel_lengths[0] > mel_lengths[1]: idx = 0 else: idx = 1 # check the first item in the batch assert linear_input[idx, -1].sum() != 0 assert linear_input[idx, -2].sum() != 0, linear_input assert mel_input[idx, -1].sum() != 0 assert mel_input[idx, -2].sum() != 0, mel_input assert stop_target[idx, -1] == 1 assert stop_target[idx, -2] == 0 assert stop_target[idx].sum() == 1 assert len(mel_lengths.shape) == 1 assert mel_lengths[idx] == mel_input[idx].shape[0] assert mel_lengths[idx] == linear_input[idx].shape[0] # check the second itme in the batch assert linear_input[1 - idx, -1].sum() == 0 assert mel_input[1 - idx, -1].sum() == 0 assert stop_target[1, mel_lengths[1]-1] == 1 assert stop_target[1, mel_lengths[1]:].sum() == 0 assert len(mel_lengths.shape) == 1 # check batch zero-frame conditions (zero-frame disabled) # assert (linear_input * stop_target.unsqueeze(2)).sum() == 0 # assert (mel_input * stop_target.unsqueeze(2)).sum() == 0