import os import unittest import torch as T from tests import get_tests_input_path from TTS.speaker_encoder.losses import GE2ELoss, AngleProtoLoss from TTS.speaker_encoder.model import SpeakerEncoder from TTS.utils.io import load_config file_path = get_tests_input_path() c = load_config(os.path.join(file_path, "test_config.json")) class SpeakerEncoderTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): dummy_input = T.rand(4, 20, 80) # B x T x D dummy_hidden = [T.rand(2, 4, 128), T.rand(2, 4, 128)] model = SpeakerEncoder( input_dim=80, proj_dim=256, lstm_dim=768, num_lstm_layers=3 ) # computing d vectors output = model.forward(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 256 output = model.inference(dummy_input) assert output.shape[0] == 4 assert output.shape[1] == 256 # compute d vectors by passing LSTM hidden # output = model.forward(dummy_input, dummy_hidden) # assert output.shape[0] == 4 # assert output.shape[1] == 20 # assert output.shape[2] == 256 # check normalization output_norm = T.nn.functional.normalize(output, dim=1, p=2) assert_diff = (output_norm - output).sum().item() assert output.type() == "torch.FloatTensor" assert ( abs(assert_diff) < 1e-4 ), f" [!] output_norm has wrong values - {assert_diff}" # compute d for a given batch dummy_input = T.rand(1, 240, 80) # B x T x D output = model.compute_embedding(dummy_input, num_frames=160, overlap=0.5) assert output.shape[0] == 1 assert output.shape[1] == 256 assert len(output.shape) == 2 class GE2ELossTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): # check random input dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim loss = GE2ELoss(loss_method="softmax") output = loss.forward(dummy_input) assert output.item() >= 0.0 # check all zeros dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim loss = GE2ELoss(loss_method="softmax") output = loss.forward(dummy_input) assert output.item() >= 0.0 # check speaker loss with orthogonal d-vectors dummy_input = T.empty(3, 64) dummy_input = T.nn.init.orthogonal_(dummy_input) dummy_input = T.cat( [ dummy_input[0].repeat(5, 1, 1).transpose(0, 1), dummy_input[1].repeat(5, 1, 1).transpose(0, 1), dummy_input[2].repeat(5, 1, 1).transpose(0, 1), ] ) # num_speaker x num_utterance x dim loss = GE2ELoss(loss_method="softmax") output = loss.forward(dummy_input) assert output.item() < 0.005 class AngleProtoLossTests(unittest.TestCase): # pylint: disable=R0201 def test_in_out(self): # check random input dummy_input = T.rand(4, 5, 64) # num_speaker x num_utterance x dim loss = AngleProtoLoss() output = loss.forward(dummy_input) assert output.item() >= 0.0 # check all zeros dummy_input = T.ones(4, 5, 64) # num_speaker x num_utterance x dim loss = AngleProtoLoss() output = loss.forward(dummy_input) assert output.item() >= 0.0 # check speaker loss with orthogonal d-vectors dummy_input = T.empty(3, 64) dummy_input = T.nn.init.orthogonal_(dummy_input) dummy_input = T.cat( [ dummy_input[0].repeat(5, 1, 1).transpose(0, 1), dummy_input[1].repeat(5, 1, 1).transpose(0, 1), dummy_input[2].repeat(5, 1, 1).transpose(0, 1), ] ) # num_speaker x num_utterance x dim loss = AngleProtoLoss() output = loss.forward(dummy_input) assert output.item() < 0.005 # class LoaderTest(unittest.TestCase): # def test_output(self): # items = libri_tts("/home/erogol/Data/Libri-TTS/train-clean-360/") # ap = AudioProcessor(**c['audio']) # dataset = MyDataset(ap, items, 1.6, 64, 10) # loader = DataLoader(dataset, batch_size=32, shuffle=False, num_workers=0, collate_fn=dataset.collate_fn) # count = 0 # for mel, spk in loader: # print(mel.shape) # if count == 4: # break # count += 1