"""Search a good noise schedule for WaveGrad for a given number of inferece iterations""" import argparse from itertools import product as cartesian_product import numpy as np import torch from torch.utils.data import DataLoader from tqdm import tqdm from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config from TTS.vocoder.datasets.preprocess import load_wav_data from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset from TTS.vocoder.utils.generic_utils import setup_generator parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, help='Path to model checkpoint.') parser.add_argument('--config_path', type=str, help='Path to model config file.') parser.add_argument('--data_path', type=str, help='Path to data directory.') parser.add_argument('--output_path', type=str, help='path for output file including file name and extension.') parser.add_argument('--num_iter', type=int, help='Number of model inference iterations that you like to optimize noise schedule for.') parser.add_argument('--use_cuda', type=bool, help='enable/disable CUDA.') parser.add_argument('--num_samples', type=int, default=1, help='Number of datasamples used for inference.') parser.add_argument('--search_depth', type=int, default=3, help='Search granularity. Increasing this increases the run-time exponentially.') # load config args = parser.parse_args() config = load_config(args.config_path) # setup audio processor ap = AudioProcessor(**config.audio) # load dataset _, train_data = load_wav_data(args.data_path, 0) train_data = train_data[:args.num_samples] dataset = WaveGradDataset(ap=ap, items=train_data, seq_len=-1, hop_len=ap.hop_length, pad_short=config.pad_short, conv_pad=config.conv_pad, is_training=True, return_segments=False, use_noise_augment=False, use_cache=False, verbose=True) loader = DataLoader( dataset, batch_size=1, shuffle=False, collate_fn=dataset.collate_full_clips, drop_last=False, num_workers=config.num_loader_workers, pin_memory=False) # setup the model model = setup_generator(config) if args.use_cuda: model.cuda() # setup optimization parameters base_values = sorted(10 * np.random.uniform(size=args.search_depth)) print(base_values) exponents = 10 ** np.linspace(-6, -1, num=args.num_iter) best_error = float('inf') best_schedule = None total_search_iter = len(base_values)**args.num_iter for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter): beta = exponents * base model.compute_noise_level(beta) for data in loader: mel, audio = data y_hat = model.inference(mel.cuda() if args.use_cuda else mel) if args.use_cuda: y_hat = y_hat.cpu() y_hat = y_hat.numpy() mel_hat = [] for i in range(y_hat.shape[0]): m = ap.melspectrogram(y_hat[i, 0])[:, :-1] mel_hat.append(torch.from_numpy(m)) mel_hat = torch.stack(mel_hat) mse = torch.sum((mel - mel_hat) ** 2).mean() if mse.item() < best_error: best_error = mse.item() best_schedule = {'beta': beta} print(f" > Found a better schedule. - MSE: {mse.item()}") np.save(args.output_path, best_schedule)