#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import glob import argparse import numpy as np from tqdm import tqdm from TTS.tts.datasets.preprocess import load_meta_data from TTS.utils.io import load_config from TTS.utils.audio import AudioProcessor def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Compute mean and variance of spectrogtram features.") parser.add_argument("--config_path", type=str, required=True, help="TTS config file path to define audio processin parameters.") parser.add_argument("--out_path", default=None, type=str, help="directory to save the output file.") args = parser.parse_args() # load config CONFIG = load_config(args.config_path) CONFIG.audio['signal_norm'] = False # do not apply earlier normalization CONFIG.audio['stats_path'] = None # discard pre-defined stats # load audio processor ap = AudioProcessor(**CONFIG.audio) # load the meta data of target dataset if 'data_path' in CONFIG.keys(): dataset_items = glob.glob(os.path.join(CONFIG.data_path, '**', '*.wav'), recursive=True) else: dataset_items = load_meta_data(CONFIG.datasets)[0] # take only train data print(f" > There are {len(dataset_items)} files.") mel_sum = 0 mel_square_sum = 0 linear_sum = 0 linear_square_sum = 0 N = 0 for item in tqdm(dataset_items): # compute features wav = ap.load_wav(item if isinstance(item, str) else item[1]) linear = ap.spectrogram(wav) mel = ap.melspectrogram(wav) # compute stats N += mel.shape[1] mel_sum += mel.sum(1) linear_sum += linear.sum(1) mel_square_sum += (mel ** 2).sum(axis=1) linear_square_sum += (linear ** 2).sum(axis=1) mel_mean = mel_sum / N mel_scale = np.sqrt(mel_square_sum / N - mel_mean ** 2) linear_mean = linear_sum / N linear_scale = np.sqrt(linear_square_sum / N - linear_mean ** 2) output_file_path = args.out_path stats = {} stats['mel_mean'] = mel_mean stats['mel_std'] = mel_scale stats['linear_mean'] = linear_mean stats['linear_std'] = linear_scale print(f' > Avg mel spec mean: {mel_mean.mean()}') print(f' > Avg mel spec scale: {mel_scale.mean()}') print(f' > Avg linear spec mean: {linear_mean.mean()}') print(f' > Avg lienar spec scale: {linear_scale.mean()}') # set default config values for mean-var scaling CONFIG.audio['stats_path'] = output_file_path CONFIG.audio['signal_norm'] = True # remove redundant values del CONFIG.audio['max_norm'] del CONFIG.audio['min_level_db'] del CONFIG.audio['symmetric_norm'] del CONFIG.audio['clip_norm'] stats['audio_config'] = CONFIG.audio np.save(output_file_path, stats, allow_pickle=True) print(f' > stats saved to {output_file_path}') if __name__ == "__main__": main()